from typing import Any, Dict, List, Optional, Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import ( Attention, FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0, ) from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import ( AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, ) from diffusers.utils import ( USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.utils.torch_utils import maybe_allow_in_graph from diffusers.models.embeddings import ( CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, ) from diffusers.models.modeling_outputs import Transformer2DModelOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name # YiYi to-do: refactor rope related functions/classes def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor: assert dim % 2 == 0, "The dimension must be even." scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim omega = 1.0 / (theta**scale) batch_size, seq_length = pos.shape out = torch.einsum("...n,d->...nd", pos, omega) cos_out = torch.cos(out) sin_out = torch.sin(out) stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) out = stacked_out.view(batch_size, -1, dim // 2, 2, 2) return out.float() # YiYi to-do: refactor rope related functions/classes class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: List[int]): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: torch.Tensor) -> torch.Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) @maybe_allow_in_graph class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) processor = FluxSingleAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, ): residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states @maybe_allow_in_graph class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__( self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 ): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward( dim=dim, dim_out=dim, activation_fn="gelu-approximate" ) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, ): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, emb=temb ) ( norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp, ) = self.norm1_context(encoder_hidden_states, emb=temb) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = ( encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output ) if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states class FluxTransformer2DModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin ): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Parameters: patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: List[int] = [16, 56, 56], ): super().__init__() self.out_channels = in_channels self.inner_dim = ( self.config.num_attention_heads * self.config.attention_head_dim ) self.pos_embed = EmbedND( dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope ) text_time_guidance_cls = ( CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings ) self.time_text_embed = text_time_guidance_cls( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim, ) self.context_embedder = nn.Linear( self.config.joint_attention_dim, self.inner_dim ) self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous( self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 ) self.proj_out = nn.Linear( self.inner_dim, patch_size * patch_size * self.out_channels, bias=True ) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if ( joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None ): logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) txt_ids = txt_ids.expand(img_ids.size(0), -1, -1) ids = torch.cat((txt_ids, img_ids), dim=1) image_rotary_emb = self.pos_embed(ids) for index_block, block in enumerate(self.transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) ( encoder_hidden_states, hidden_states, ) = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, ) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len( controlnet_block_samples ) interval_control = int(np.ceil(interval_control)) hidden_states = ( hidden_states + controlnet_block_samples[index_block // interval_control] ) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = ( {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} ) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, ) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len( controlnet_single_block_samples ) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)