File size: 20,548 Bytes
cc12d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from typing import Any, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    FluxAttnProcessor2_0,
    FluxSingleAttnProcessor2_0,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import (
    AdaLayerNormContinuous,
    AdaLayerNormZero,
    AdaLayerNormZeroSingle,
)
from diffusers.utils import (
    USE_PEFT_BACKEND,
    is_torch_version,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import (
    CombinedTimestepGuidanceTextProjEmbeddings,
    CombinedTimestepTextProjEmbeddings,
)
from diffusers.models.modeling_outputs import Transformer2DModelOutput


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# YiYi to-do: refactor rope related functions/classes
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
    assert dim % 2 == 0, "The dimension must be even."

    scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
    omega = 1.0 / (theta**scale)

    batch_size, seq_length = pos.shape
    out = torch.einsum("...n,d->...nd", pos, omega)
    cos_out = torch.cos(out)
    sin_out = torch.sin(out)

    stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
    out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
    return out.float()


# YiYi to-do: refactor rope related functions/classes
class EmbedND(nn.Module):
    def __init__(self, dim: int, theta: int, axes_dim: List[int]):
        super().__init__()
        self.dim = dim
        self.theta = theta
        self.axes_dim = axes_dim

    def forward(self, ids: torch.Tensor) -> torch.Tensor:
        n_axes = ids.shape[-1]
        emb = torch.cat(
            [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
            dim=-3,
        )
        return emb.unsqueeze(1)


@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):
    r"""

    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.



    Reference: https://arxiv.org/abs/2403.03206



    Parameters:

        dim (`int`): The number of channels in the input and output.

        num_attention_heads (`int`): The number of heads to use for multi-head attention.

        attention_head_dim (`int`): The number of channels in each head.

        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the

            processing of `context` conditions.

    """

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        processor = FluxSingleAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        temb: torch.FloatTensor,

        image_rotary_emb=None,

    ):
        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states
        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states


@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
    r"""

    A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.



    Reference: https://arxiv.org/abs/2403.03206



    Parameters:

        dim (`int`): The number of channels in the input and output.

        num_attention_heads (`int`): The number of heads to use for multi-head attention.

        attention_head_dim (`int`): The number of channels in each head.

        context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the

            processing of `context` conditions.

    """

    def __init__(

        self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6

    ):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(
            dim=dim, dim_out=dim, activation_fn="gelu-approximate"
        )

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(

        self,

        hidden_states: torch.FloatTensor,

        encoder_hidden_states: torch.FloatTensor,

        temb: torch.FloatTensor,

        image_rotary_emb=None,

    ):
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
            hidden_states, emb=temb
        )

        (
            norm_encoder_hidden_states,
            c_gate_msa,
            c_shift_mlp,
            c_scale_mlp,
            c_gate_mlp,
        ) = self.norm1_context(encoder_hidden_states, emb=temb)

        # Attention.
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
        )

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = (
            norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        )

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = hidden_states + ff_output

        # Process attention outputs for the `encoder_hidden_states`.

        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = (
            norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
            + c_shift_mlp[:, None]
        )

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = (
            encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
        )
        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states


class FluxTransformer2DModel(
    ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
):
    """

    The Transformer model introduced in Flux.



    Reference: https://blackforestlabs.ai/announcing-black-forest-labs/



    Parameters:

        patch_size (`int`): Patch size to turn the input data into small patches.

        in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.

        num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.

        num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.

        attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.

        num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.

        joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.

        pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.

        guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.

    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(

        self,

        patch_size: int = 1,

        in_channels: int = 64,

        num_layers: int = 19,

        num_single_layers: int = 38,

        attention_head_dim: int = 128,

        num_attention_heads: int = 24,

        joint_attention_dim: int = 4096,

        pooled_projection_dim: int = 768,

        guidance_embeds: bool = False,

        axes_dims_rope: List[int] = [16, 56, 56],

    ):
        super().__init__()
        self.out_channels = in_channels
        self.inner_dim = (
            self.config.num_attention_heads * self.config.attention_head_dim
        )

        self.pos_embed = EmbedND(
            dim=self.inner_dim, theta=10000, axes_dim=axes_dims_rope
        )
        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings
            if guidance_embeds
            else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim,
            pooled_projection_dim=self.config.pooled_projection_dim,
        )

        self.context_embedder = nn.Linear(
            self.config.joint_attention_dim, self.inner_dim
        )
        self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(
            self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
        )
        self.proj_out = nn.Linear(
            self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
        )

        self.gradient_checkpointing = False

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(

        self,

        hidden_states: torch.Tensor,

        encoder_hidden_states: torch.Tensor = None,

        pooled_projections: torch.Tensor = None,

        timestep: torch.LongTensor = None,

        img_ids: torch.Tensor = None,

        txt_ids: torch.Tensor = None,

        guidance: torch.Tensor = None,

        joint_attention_kwargs: Optional[Dict[str, Any]] = None,

        controlnet_block_samples=None,

        controlnet_single_block_samples=None,

        return_dict: bool = True,

    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        """

        The [`FluxTransformer2DModel`] forward method.



        Args:

            hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):

                Input `hidden_states`.

            encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):

                Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.

            pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected

                from the embeddings of input conditions.

            timestep ( `torch.LongTensor`):

                Used to indicate denoising step.

            block_controlnet_hidden_states: (`list` of `torch.Tensor`):

                A list of tensors that if specified are added to the residuals of transformer blocks.

            joint_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under

                `self.processor` in

                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain

                tuple.



        Returns:

            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a

            `tuple` where the first element is the sample tensor.

        """
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if (
                joint_attention_kwargs is not None
                and joint_attention_kwargs.get("scale", None) is not None
            ):
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )
        hidden_states = self.x_embedder(hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None
        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        txt_ids = txt_ids.expand(img_ids.size(0), -1, -1)
        ids = torch.cat((txt_ids, img_ids), dim=1)
        image_rotary_emb = self.pos_embed(ids)

        for index_block, block in enumerate(self.transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                (
                    encoder_hidden_states,
                    hidden_states,
                ) = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )

            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(
                    controlnet_block_samples
                )
                interval_control = int(np.ceil(interval_control))
                hidden_states = (
                    hidden_states
                    + controlnet_block_samples[index_block // interval_control]
                )

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = (
                    {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                )
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(
                    controlnet_single_block_samples
                )
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)