Spaces:
Sleeping
Sleeping
File size: 7,046 Bytes
4cd3714 714cfbf d781ad4 7008805 657afd9 4cd3714 dc36253 4cd3714 7008805 657afd9 7008805 5a203eb 4cd3714 dc36253 4cd3714 657afd9 4cd3714 925fada b05b0e9 925fada b05b0e9 925fada b05b0e9 925fada 7008805 657afd9 7008805 657afd9 925fada dc36253 925fada dc36253 4cd3714 dc36253 5a203eb 925fada 7008805 dc36253 5a203eb dc36253 925fada b05b0e9 dc36253 925fada 5a203eb b05b0e9 dc36253 b05b0e9 dc36253 925fada dc36253 657afd9 dc36253 7008805 657afd9 7008805 657afd9 7008805 925fada 657afd9 925fada 657afd9 59adf16 b05b0e9 882c701 7008805 4cd3714 e65f39b 749de3f b05b0e9 657afd9 749de3f b05b0e9 749de3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import os
from pathlib import Path
import shutil
import tempfile
# Load YOLOv8 model
model = YOLO("best.pt")
# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)
# Global patient data list to accumulate HTML data
patient_data = []
def predict_image(input_image, name, age, medical_record, sex):
if input_image is None:
return None, "Please Input The Image"
# Convert Gradio input image (PIL Image) to numpy array
image_np = np.array(input_image)
# Ensure the image is in the correct format
if len(image_np.shape) == 2: # grayscale to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
elif image_np.shape[2] == 4: # RGBA to RGB
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
# Perform prediction
results = model(image_np)
# Draw bounding boxes and white circle on the image
image_with_boxes = image_np.copy()
raw_predictions = []
if results[0].boxes:
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
class_index = highest_confidence_result.cls.item()
if class_index == 0:
label = "Immature"
color = (0, 255, 255)
elif class_index == 1:
label = "Mature"
color = (255, 0, 0)
else:
label = "Normal"
color = (0, 255, 0)
confidence = highest_confidence_result.conf.item()
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
# Draw the bounding box
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
# Draw the white circle in the center of the bounding box
box_width = xmax - xmin
box_height = ymax - ymin
center_x = xmin + box_width // 2
center_y = ymin + box_height // 2
radius = int((box_width + box_height) / 2 / 12)
cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), 2)
# Enlarge font scale and thickness
font_scale = 1.0
thickness = 2
# Put the label text with black background
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
raw_predictions_str = "\n".join(raw_predictions)
# Convert to PIL image for further processing
pil_image_with_boxes = Image.fromarray(image_with_boxes)
# Add text and watermark
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
# Save images to directories
image_name = f"{name}-{age}-{sex}-{medical_record}.png"
input_image.save(uploaded_folder / image_name)
pil_image_with_boxes.save(predicted_folder / image_name)
return pil_image_with_boxes, raw_predictions_str
# Function to add text and watermark
def add_text_and_watermark(image, name, age, medical_record, sex, label):
draw = ImageDraw.Draw(image)
font_size = 24
try:
font = ImageFont.truetype("font.ttf", size=font_size)
except IOError:
font = ImageFont.load_default()
print("Error: cannot open resource, using default font.")
text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
text_x, text_y = 20, 40
padding = 10
# Draw a filled rectangle for the background
draw.rectangle(
[text_x - padding, text_y - padding, text_x + 500, text_y + 30 + padding],
fill="black"
)
# Draw text on top of the rectangle
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
return image
# Function to save patient info in HTML and accumulate data
def save_patient_info_to_html(name, age, medical_record, sex, result):
global patient_data
new_data = f"<p><strong>Name:</strong> {name}, <strong>Age:</strong> {age}, <strong>Medical Record:</strong> {medical_record}, <strong>Sex:</strong> {sex}, <strong>Result:</strong> {result}</p>"
patient_data.append(new_data)
html_content = f"""
<html>
<body>
<h1>Patient Information</h1>
{''.join(patient_data)}
</body>
</html>
"""
html_file_path = os.path.join(tempfile.gettempdir(), 'patient_info.html')
with open(html_file_path, 'w') as f:
f.write(html_content)
return html_file_path
# Function to download the folders
def download_folder(folder_path):
zip_path = os.path.join(tempfile.gettempdir(), f"{Path(folder_path).name}.zip")
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path)
return zip_path
# Gradio Interface
with gr.Blocks() as demo:
with gr.Column():
gr.Markdown("# Cataract Detection System")
gr.Markdown("Upload an image to detect cataract and add patient details.")
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
with gr.Column():
name = gr.Textbox(label="Name")
age = gr.Number(label="Age")
medical_record = gr.Number(label="Medical Record")
sex = gr.Radio(["Male", "Female"], label="Sex")
input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")
with gr.Column():
submit_btn = gr.Button("Submit")
output_image = gr.Image(type="pil", label="Predicted Image")
with gr.Row():
raw_result = gr.Textbox(label="Prediction Result")
with gr.Row():
download_html_btn = gr.Button("Download Patient Information (HTML)")
download_uploaded_btn = gr.Button("Download Uploaded Images")
download_predicted_btn = gr.Button("Download Predicted Images")
patient_info_file = gr.File(label="Patient Information HTML File")
uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
predicted_folder_file = gr.File(label="Predicted Images Zip File")
# Use gr.State to hold folder paths
uploaded_folder_state = gr.State(str(uploaded_folder))
predicted_folder_state = gr.State(str(predicted_folder))
submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
download_uploaded_btn.click(fn=download_folder, inputs=[uploaded_folder_state], outputs=uploaded_folder_file)
download_predicted_btn.click(fn=download_folder, inputs=[predicted_folder_state], outputs=predicted_folder_file)
# Launch Gradio app
demo.launch() |