File size: 7,046 Bytes
4cd3714
 
 
 
 
714cfbf
d781ad4
7008805
657afd9
4cd3714
dc36253
4cd3714
 
7008805
 
 
 
 
 
657afd9
 
7008805
5a203eb
4cd3714
 
 
 
 
 
 
 
 
 
 
 
dc36253
4cd3714
 
657afd9
4cd3714
 
 
 
925fada
 
 
 
b05b0e9
925fada
 
b05b0e9
925fada
 
b05b0e9
925fada
 
 
 
 
 
7008805
657afd9
7008805
 
657afd9
 
 
 
925fada
 
 
 
 
 
 
 
 
dc36253
 
925fada
dc36253
4cd3714
 
dc36253
5a203eb
925fada
7008805
 
 
 
 
dc36253
 
 
5a203eb
dc36253
925fada
b05b0e9
dc36253
 
 
 
 
925fada
5a203eb
b05b0e9
dc36253
 
 
 
b05b0e9
dc36253
 
925fada
dc36253
 
 
657afd9
dc36253
7008805
 
657afd9
 
 
 
7008805
 
 
 
657afd9
7008805
 
 
925fada
657afd9
 
 
925fada
657afd9
59adf16
b05b0e9
882c701
 
 
7008805
4cd3714
e65f39b
749de3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05b0e9
 
 
 
657afd9
749de3f
b05b0e9
 
749de3f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import os
from pathlib import Path
import shutil
import tempfile

# Load YOLOv8 model
model = YOLO("best.pt")

# Create directories if not present
uploaded_folder = Path('Uploaded_Picture')
predicted_folder = Path('Predicted_Picture')
uploaded_folder.mkdir(parents=True, exist_ok=True)
predicted_folder.mkdir(parents=True, exist_ok=True)

# Global patient data list to accumulate HTML data
patient_data = []

def predict_image(input_image, name, age, medical_record, sex):
    if input_image is None:
        return None, "Please Input The Image"

    # Convert Gradio input image (PIL Image) to numpy array
    image_np = np.array(input_image)

    # Ensure the image is in the correct format
    if len(image_np.shape) == 2:  # grayscale to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
    elif image_np.shape[2] == 4:  # RGBA to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)

    # Perform prediction
    results = model(image_np)

    # Draw bounding boxes and white circle on the image
    image_with_boxes = image_np.copy()
    raw_predictions = []

    if results[0].boxes:
        highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
        class_index = highest_confidence_result.cls.item()
        if class_index == 0:
            label = "Immature"
            color = (0, 255, 255)
        elif class_index == 1:
            label = "Mature"
            color = (255, 0, 0)
        else:
            label = "Normal"
            color = (0, 255, 0)

        confidence = highest_confidence_result.conf.item()
        xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
        
        # Draw the bounding box
        cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)

        # Draw the white circle in the center of the bounding box
        box_width = xmax - xmin
        box_height = ymax - ymin
        center_x = xmin + box_width // 2
        center_y = ymin + box_height // 2
        radius = int((box_width + box_height) / 2 / 12)
        cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), 2)
        
        # Enlarge font scale and thickness
        font_scale = 1.0
        thickness = 2
        
        # Put the label text with black background
        cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
        
        raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")

    raw_predictions_str = "\n".join(raw_predictions)
    
    # Convert to PIL image for further processing
    pil_image_with_boxes = Image.fromarray(image_with_boxes)

    # Add text and watermark
    pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
    
    # Save images to directories
    image_name = f"{name}-{age}-{sex}-{medical_record}.png"
    input_image.save(uploaded_folder / image_name)
    pil_image_with_boxes.save(predicted_folder / image_name)
    
    return pil_image_with_boxes, raw_predictions_str

# Function to add text and watermark
def add_text_and_watermark(image, name, age, medical_record, sex, label):
    draw = ImageDraw.Draw(image)
    
    font_size = 24
    try:
        font = ImageFont.truetype("font.ttf", size=font_size)
    except IOError:
        font = ImageFont.load_default()
        print("Error: cannot open resource, using default font.")
    
    text = f"Name: {name}, Age: {age}, Medical Record: {medical_record}, Sex: {sex}, Result: {label}"
    text_x, text_y = 20, 40
    padding = 10

    # Draw a filled rectangle for the background
    draw.rectangle(
        [text_x - padding, text_y - padding, text_x + 500, text_y + 30 + padding],
        fill="black"
    )
    
    # Draw text on top of the rectangle
    draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)

    return image

# Function to save patient info in HTML and accumulate data
def save_patient_info_to_html(name, age, medical_record, sex, result):
    global patient_data
    new_data = f"<p><strong>Name:</strong> {name}, <strong>Age:</strong> {age}, <strong>Medical Record:</strong> {medical_record}, <strong>Sex:</strong> {sex}, <strong>Result:</strong> {result}</p>"
    patient_data.append(new_data)

    html_content = f"""
    <html>
        <body>
            <h1>Patient Information</h1>
            {''.join(patient_data)}
        </body>
    </html>
    """
    
    html_file_path = os.path.join(tempfile.gettempdir(), 'patient_info.html')
    with open(html_file_path, 'w') as f:
        f.write(html_content)
    
    return html_file_path

# Function to download the folders
def download_folder(folder_path):
    zip_path = os.path.join(tempfile.gettempdir(), f"{Path(folder_path).name}.zip")
    shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder_path)
    return zip_path

# Gradio Interface
with gr.Blocks() as demo:
    with gr.Column():
        gr.Markdown("# Cataract Detection System")
        gr.Markdown("Upload an image to detect cataract and add patient details.")
        gr.Markdown("This application uses YOLOv8 with mAP=0.981")
    
    with gr.Column():
        name = gr.Textbox(label="Name")
        age = gr.Number(label="Age")
        medical_record = gr.Number(label="Medical Record")
        sex = gr.Radio(["Male", "Female"], label="Sex")
        input_image = gr.Image(type="pil", label="Upload an Image", image_mode="RGB")

    with gr.Column():
        submit_btn = gr.Button("Submit")
        output_image = gr.Image(type="pil", label="Predicted Image")

    with gr.Row():
        raw_result = gr.Textbox(label="Prediction Result")
    
    with gr.Row():
        download_html_btn = gr.Button("Download Patient Information (HTML)")
        download_uploaded_btn = gr.Button("Download Uploaded Images")
        download_predicted_btn = gr.Button("Download Predicted Images")
    
    patient_info_file = gr.File(label="Patient Information HTML File")
    uploaded_folder_file = gr.File(label="Uploaded Images Zip File")
    predicted_folder_file = gr.File(label="Predicted Images Zip File")

    # Use gr.State to hold folder paths
    uploaded_folder_state = gr.State(str(uploaded_folder))
    predicted_folder_state = gr.State(str(predicted_folder))

    submit_btn.click(fn=predict_image, inputs=[name, age, medical_record, sex, input_image], outputs=[output_image, raw_result])
    download_html_btn.click(fn=save_patient_info_to_html, inputs=[name, age, medical_record, sex, raw_result], outputs=patient_info_file)
    download_uploaded_btn.click(fn=download_folder, inputs=[uploaded_folder_state], outputs=uploaded_folder_file)
    download_predicted_btn.click(fn=download_folder, inputs=[predicted_folder_state], outputs=predicted_folder_file)

# Launch Gradio app
demo.launch()