Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
7008805
1
Parent(s):
acbef3a
Update app2.py
Browse files
app2.py
CHANGED
@@ -3,17 +3,26 @@ from ultralytics import YOLO
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
-
import sqlite3
|
7 |
import base64
|
8 |
from io import BytesIO
|
9 |
import tempfile
|
10 |
-
import pandas as pd
|
11 |
import os
|
12 |
from pathlib import Path
|
|
|
13 |
|
14 |
# Load YOLOv8 model
|
15 |
model = YOLO("best.pt")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def predict_image(input_image, name, age, medical_record, sex):
|
18 |
if input_image is None:
|
19 |
return None, "Please Input The Image"
|
@@ -55,6 +64,18 @@ def predict_image(input_image, name, age, medical_record, sex):
|
|
55 |
|
56 |
# Draw the bounding box
|
57 |
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Enlarge font scale and thickness
|
60 |
font_scale = 1.0
|
@@ -77,6 +98,11 @@ def predict_image(input_image, name, age, medical_record, sex):
|
|
77 |
# Add text and watermark
|
78 |
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
80 |
return pil_image_with_boxes, raw_predictions_str
|
81 |
|
82 |
# Function to add watermark
|
@@ -109,7 +135,7 @@ def add_text_and_watermark(image, name, age, medical_record, sex, label):
|
|
109 |
draw = ImageDraw.Draw(image)
|
110 |
|
111 |
# Load a larger font (adjust the size as needed)
|
112 |
-
font_size =
|
113 |
try:
|
114 |
font = ImageFont.truetype("font.ttf", size=font_size)
|
115 |
except IOError:
|
@@ -139,110 +165,40 @@ def add_text_and_watermark(image, name, age, medical_record, sex, label):
|
|
139 |
|
140 |
return image_with_watermark
|
141 |
|
142 |
-
# Function to
|
143 |
-
def
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
158 |
-
input_image_bytes = input_buffer.tobytes()
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
(name, age, medical_record, sex, input_image_bytes, predicted_image_bytes, result))
|
167 |
-
conn.commit()
|
168 |
-
conn.close()
|
169 |
-
return "Result submitted to database."
|
170 |
-
|
171 |
-
# Function to load and view database in HTML format
|
172 |
-
def view_database():
|
173 |
-
conn = sqlite3.connect('results.db')
|
174 |
-
c = conn.cursor()
|
175 |
-
c.execute("SELECT name, age, medical_record, sex, input_image, predicted_image, result FROM results")
|
176 |
-
rows = c.fetchall()
|
177 |
-
conn.close()
|
178 |
-
|
179 |
-
# Prepare the HTML content
|
180 |
-
html_content = "<table border='1'><tr><th>Name</th><th>Age</th><th>Medical Record</th><th>Sex</th><th>Input Image</th><th>Predicted Image</th><th>Result</th></tr>"
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
# Decode the images
|
186 |
-
input_image = Image.open(BytesIO(input_image_bytes))
|
187 |
-
predicted_image = Image.open(BytesIO(predicted_image_bytes))
|
188 |
-
|
189 |
-
# Convert images to base64 for display in HTML
|
190 |
-
buffered_input = BytesIO()
|
191 |
-
input_image.save(buffered_input, format="PNG")
|
192 |
-
input_image_base64 = base64.b64encode(buffered_input.getvalue()).decode('utf-8')
|
193 |
-
|
194 |
-
buffered_predicted = BytesIO()
|
195 |
-
predicted_image.save(buffered_predicted, format="PNG")
|
196 |
-
predicted_image_base64 = base64.b64encode(buffered_predicted.getvalue()).decode('utf-8')
|
197 |
-
|
198 |
-
# Add a row to the HTML table
|
199 |
-
html_content += f"<tr><td>{name}</td><td>{age}</td><td>{medical_record}</td><td>{sex}</td><td><img src='data:image/png;base64,{input_image_base64}' width='100'></td><td><img src='data:image/png;base64,{predicted_image_base64}' width='100'></td><td>{result}</td></tr>"
|
200 |
-
|
201 |
-
html_content += "</table>"
|
202 |
-
|
203 |
-
return html_content
|
204 |
-
|
205 |
-
# Function to download database or HTML file
|
206 |
-
def download_file(file_format):
|
207 |
-
directory = tempfile.gettempdir()
|
208 |
-
db_file_path = os.path.join(directory, 'results.db')
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
if not os.path.exists(db_file_path):
|
213 |
-
# Create a dummy database file for demonstration
|
214 |
-
conn = sqlite3.connect(db_file_path)
|
215 |
-
conn.execute('CREATE TABLE IF NOT EXISTS results (id INTEGER PRIMARY KEY, name TEXT)')
|
216 |
-
conn.commit()
|
217 |
-
conn.close()
|
218 |
-
return db_file_path
|
219 |
|
220 |
-
|
221 |
-
# Connect to the SQLite database
|
222 |
-
conn = sqlite3.connect(db_file_path)
|
223 |
-
|
224 |
-
try:
|
225 |
-
# Attempt to read the results table into a DataFrame
|
226 |
-
df = pd.read_sql_query("SELECT * FROM results", conn)
|
227 |
-
except pd.errors.DatabaseError as e:
|
228 |
-
conn.close()
|
229 |
-
raise ValueError("Table 'results' does not exist in the database.") from e
|
230 |
-
|
231 |
-
# Close the database connection
|
232 |
-
conn.close()
|
233 |
-
|
234 |
-
# Define the path for the HTML file
|
235 |
-
html_file_path = os.path.join(directory, "results.html")
|
236 |
-
|
237 |
-
# Save the DataFrame as an HTML file
|
238 |
-
df.to_html(html_file_path, index=False)
|
239 |
-
|
240 |
-
return html_file_path
|
241 |
-
else:
|
242 |
-
raise ValueError("Invalid file format specified.")
|
243 |
-
|
244 |
-
# Initialize the database
|
245 |
-
init_db()
|
246 |
|
247 |
# Gradio Interface
|
248 |
def interface(name, age, medical_record, sex, input_image):
|
@@ -250,65 +206,37 @@ def interface(name, age, medical_record, sex, input_image):
|
|
250 |
return None, "Please upload an image.", None
|
251 |
|
252 |
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
|
253 |
-
submit_status = submit_result(name, age, medical_record, sex, input_image, output_image, raw_result)
|
254 |
-
|
255 |
-
return output_image, raw_result, submit_status
|
256 |
-
|
257 |
-
# View Database Function (Updated)
|
258 |
-
def view_db_interface():
|
259 |
-
html_content = view_database()
|
260 |
-
return html_content
|
261 |
-
|
262 |
-
# Download Function
|
263 |
-
def download_interface(choice):
|
264 |
-
try:
|
265 |
-
# Get the file path
|
266 |
-
file_path = download_file(choice)
|
267 |
-
|
268 |
-
# Return the file path (string) directly for the Gradio component to handle
|
269 |
-
return file_path
|
270 |
-
except (FileNotFoundError, ValueError) as e:
|
271 |
-
# Display error message in Gradio output
|
272 |
-
return str(e)
|
273 |
-
|
274 |
-
# Gradio Blocks
|
275 |
-
with gr.Blocks() as demo:
|
276 |
-
with gr.Column():
|
277 |
-
gr.Markdown("# Cataract Detection System")
|
278 |
-
gr.Markdown("Upload an image to detect cataract and add patient details.")
|
279 |
-
gr.Markdown("This application uses YOLOv8 with mAP=0.981")
|
280 |
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
demo.launch()
|
|
|
3 |
import cv2
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
|
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
import tempfile
|
|
|
9 |
import os
|
10 |
from pathlib import Path
|
11 |
+
import shutil
|
12 |
|
13 |
# Load YOLOv8 model
|
14 |
model = YOLO("best.pt")
|
15 |
|
16 |
+
# Create directories if not present
|
17 |
+
uploaded_folder = Path('Uploaded_Picture')
|
18 |
+
predicted_folder = Path('Predicted_Picture')
|
19 |
+
uploaded_folder.mkdir(parents=True, exist_ok=True)
|
20 |
+
predicted_folder.mkdir(parents=True, exist_ok=True)
|
21 |
+
|
22 |
+
# Path to store accumulated HTML data
|
23 |
+
html_file_path = Path(tempfile.gettempdir()) / 'patient_data.html'
|
24 |
+
|
25 |
+
# Function to predict image and add bounding box, text, circle, and watermark
|
26 |
def predict_image(input_image, name, age, medical_record, sex):
|
27 |
if input_image is None:
|
28 |
return None, "Please Input The Image"
|
|
|
64 |
|
65 |
# Draw the bounding box
|
66 |
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
67 |
+
|
68 |
+
# Calculate the center of the bounding box
|
69 |
+
center_x = (xmin + xmax) // 2
|
70 |
+
center_y = (ymin + ymax) // 2
|
71 |
+
|
72 |
+
# Calculate the radius (1/12 of the average of the width and height of the bounding box)
|
73 |
+
box_width = xmax - xmin
|
74 |
+
box_height = ymax - ymin
|
75 |
+
radius = int((box_width + box_height) / 24) # Average of width and height divided by 12
|
76 |
+
|
77 |
+
# Draw a white circle at the center of the bounding box
|
78 |
+
cv2.circle(image_with_boxes, (center_x, center_y), radius, (255, 255, 255), thickness=2)
|
79 |
|
80 |
# Enlarge font scale and thickness
|
81 |
font_scale = 1.0
|
|
|
98 |
# Add text and watermark
|
99 |
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, age, medical_record, sex, label)
|
100 |
|
101 |
+
# Save images to directories
|
102 |
+
image_name = f"{name}-{age}-{sex}-{medical_record}.png"
|
103 |
+
input_image.save(uploaded_folder / image_name)
|
104 |
+
pil_image_with_boxes.save(predicted_folder / image_name)
|
105 |
+
|
106 |
return pil_image_with_boxes, raw_predictions_str
|
107 |
|
108 |
# Function to add watermark
|
|
|
135 |
draw = ImageDraw.Draw(image)
|
136 |
|
137 |
# Load a larger font (adjust the size as needed)
|
138 |
+
font_size = 24 # Example font size
|
139 |
try:
|
140 |
font = ImageFont.truetype("font.ttf", size=font_size)
|
141 |
except IOError:
|
|
|
165 |
|
166 |
return image_with_watermark
|
167 |
|
168 |
+
# Function to save patient info in HTML and accumulate data
|
169 |
+
def save_patient_info_to_html(name, age, medical_record, sex, result):
|
170 |
+
html_content = f"""
|
171 |
+
<html>
|
172 |
+
<body>
|
173 |
+
<h1>Patient Information</h1>
|
174 |
+
<p><strong>Name:</strong> {name}</p>
|
175 |
+
<p><strong>Age:</strong> {age}</p>
|
176 |
+
<p><strong>Medical Record:</strong> {medical_record}</p>
|
177 |
+
<p><strong>Sex:</strong> {sex}</p>
|
178 |
+
<p><strong>Result:</strong> {result}</p>
|
179 |
+
<hr>
|
180 |
+
</body>
|
181 |
+
</html>
|
182 |
+
"""
|
|
|
|
|
183 |
|
184 |
+
# Check if the HTML file already exists
|
185 |
+
if html_file_path.exists():
|
186 |
+
with open(html_file_path, 'a') as f:
|
187 |
+
f.write(html_content)
|
188 |
+
else:
|
189 |
+
with open(html_file_path, 'w') as f:
|
190 |
+
f.write(html_content)
|
191 |
|
192 |
+
return str(html_file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
# Function to download the folders
|
195 |
+
def download_folder(folder):
|
196 |
+
zip_path = os.path.join(tempfile.gettempdir(), f"{folder}.zip")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
+
# Zip the folder
|
199 |
+
shutil.make_archive(zip_path.replace('.zip', ''), 'zip', folder)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
+
return zip_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
# Gradio Interface
|
204 |
def interface(name, age, medical_record, sex, input_image):
|
|
|
206 |
return None, "Please upload an image.", None
|
207 |
|
208 |
output_image, raw_result = predict_image(input_image, name, age, medical_record, sex)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
if output_image is None:
|
211 |
+
return None, raw_result, None
|
212 |
+
|
213 |
+
# Save patient info to HTML
|
214 |
+
html_file_path = save_patient_info_to_html(name, age, medical_record, sex, raw_result)
|
215 |
+
|
216 |
+
# Encode the image to display in Gradio
|
217 |
+
buffered = BytesIO()
|
218 |
+
output_image.save(buffered, format="PNG")
|
219 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
220 |
+
|
221 |
+
# Provide the zip file path for download
|
222 |
+
zip_file = download_folder(predicted_folder)
|
223 |
+
|
224 |
+
return f'<img src="data:image/png;base64,{img_str}" alt="Processed Image"/>', raw_result, zip_file
|
225 |
+
|
226 |
+
# Define Gradio interface
|
227 |
+
gr.Interface(
|
228 |
+
fn=interface,
|
229 |
+
inputs=[
|
230 |
+
gr.Textbox(label="Name"),
|
231 |
+
gr.Textbox(label="Age"),
|
232 |
+
gr.Textbox(label="Medical Record"),
|
233 |
+
gr.Dropdown(label="Sex", choices=["Male", "Female", "Other"]),
|
234 |
+
gr.Image(source="upload", tool="editor", label="Upload an Image")
|
235 |
+
],
|
236 |
+
outputs=[
|
237 |
+
gr.HTML(label="Processed Image"),
|
238 |
+
gr.Textbox(label="Raw Predictions"),
|
239 |
+
gr.File(label="Download ZIP")
|
240 |
+
],
|
241 |
+
title="Patient Image Analysis"
|
242 |
+
).launch()
|
|