Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,14 @@ import cv2
|
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
import sqlite3
|
|
|
|
|
|
|
7 |
import pandas as pd
|
8 |
|
9 |
-
# Load
|
10 |
model = YOLO("best.pt")
|
11 |
|
12 |
-
# Define label mappings
|
13 |
-
label_mapping = {0: 'immature', 1: 'mature', 2: 'normal'}
|
14 |
-
inverse_label_mapping = {'immature': 0, 'mature': 1, 'normal': 2}
|
15 |
-
|
16 |
# Function to perform prediction
|
17 |
def predict_image(input_image, name, patient_id):
|
18 |
if input_image is None:
|
@@ -27,73 +26,240 @@ def predict_image(input_image, name, patient_id):
|
|
27 |
elif image_np.shape[2] == 4: # RGBA to RGB
|
28 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
29 |
|
30 |
-
# Perform
|
31 |
results = model(image_np)
|
32 |
|
33 |
# Draw bounding boxes on the image
|
34 |
image_with_boxes = image_np.copy()
|
35 |
raw_predictions = []
|
|
|
36 |
|
37 |
if results[0].boxes:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
predicted_class = int(box.cls.item())
|
42 |
confidence = box.conf.item()
|
43 |
|
44 |
-
#
|
45 |
-
if
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
color = (0, 255, 0)
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Gradio Interface
|
69 |
def interface(name, patient_id, input_image):
|
70 |
if input_image is None:
|
71 |
return "Please upload an image."
|
72 |
|
73 |
-
# Run prediction
|
74 |
output_image, raw_result = predict_image(input_image, name, patient_id)
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
# Gradio Blocks
|
79 |
with gr.Blocks() as demo:
|
80 |
-
with gr.
|
81 |
-
gr.
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
raw_result = gr.Textbox(label="Raw Result", lines=5)
|
95 |
|
96 |
-
|
97 |
|
98 |
-
# Launch the Gradio app
|
99 |
demo.launch()
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
import sqlite3
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
+
import tempfile
|
10 |
import pandas as pd
|
11 |
|
12 |
+
# Load YOLOv8 model
|
13 |
model = YOLO("best.pt")
|
14 |
|
|
|
|
|
|
|
|
|
15 |
# Function to perform prediction
|
16 |
def predict_image(input_image, name, patient_id):
|
17 |
if input_image is None:
|
|
|
26 |
elif image_np.shape[2] == 4: # RGBA to RGB
|
27 |
image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)
|
28 |
|
29 |
+
# Perform prediction
|
30 |
results = model(image_np)
|
31 |
|
32 |
# Draw bounding boxes on the image
|
33 |
image_with_boxes = image_np.copy()
|
34 |
raw_predictions = []
|
35 |
+
label = "Unknown" # Default label if no detection
|
36 |
|
37 |
if results[0].boxes:
|
38 |
+
for box in results[0].boxes:
|
39 |
+
# Get class index and confidence for each detection
|
40 |
+
class_index = box.cls.item()
|
|
|
41 |
confidence = box.conf.item()
|
42 |
|
43 |
+
# Determine the label based on the class index
|
44 |
+
if class_index == 0:
|
45 |
+
label = "Mature"
|
46 |
+
color = (255, 0, 0) # Red for Mature
|
47 |
+
elif class_index == 1:
|
48 |
+
label = "Immature"
|
49 |
+
color = (0, 255, 255) # Yellow for Immature
|
50 |
+
else:
|
51 |
+
label = "Normal"
|
52 |
+
color = (0, 255, 0) # Green for Normal
|
53 |
+
|
54 |
+
xmin, ymin, xmax, ymax = map(int, box.xyxy[0])
|
55 |
+
|
56 |
+
# Draw the bounding box
|
57 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
58 |
+
|
59 |
+
# Enlarge font scale and thickness
|
60 |
+
font_scale = 1.0
|
61 |
+
thickness = 2
|
62 |
+
|
63 |
+
# Calculate label background size
|
64 |
+
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
|
65 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
|
66 |
+
|
67 |
+
# Put the label text with black background
|
68 |
+
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
69 |
+
|
70 |
+
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
|
71 |
+
|
72 |
+
raw_predictions_str = "\n".join(raw_predictions)
|
73 |
+
|
74 |
+
# Convert to PIL image for further processing
|
75 |
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
76 |
|
77 |
+
# Add text and watermark
|
78 |
+
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, patient_id, label)
|
79 |
+
|
80 |
+
return pil_image_with_boxes, raw_predictions_str
|
81 |
+
|
82 |
+
# Function to add watermark
|
83 |
+
def add_watermark(image):
|
84 |
+
try:
|
85 |
+
logo = Image.open('image-logo.png').convert("RGBA")
|
86 |
+
image = image.convert("RGBA")
|
87 |
+
|
88 |
+
# Resize logo
|
89 |
+
basewidth = 100
|
90 |
+
wpercent = (basewidth / float(logo.size[0]))
|
91 |
+
hsize = int((float(wpercent) * logo.size[1]))
|
92 |
+
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
93 |
+
|
94 |
+
# Position logo
|
95 |
+
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
96 |
+
|
97 |
+
# Composite image
|
98 |
+
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
99 |
+
transparent.paste(image, (0, 0))
|
100 |
+
transparent.paste(logo, position, mask=logo)
|
101 |
+
|
102 |
+
return transparent.convert("RGB")
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error adding watermark: {e}")
|
105 |
+
return image
|
106 |
+
|
107 |
+
# Function to add text and watermark
|
108 |
+
def add_text_and_watermark(image, name, patient_id, label):
|
109 |
+
draw = ImageDraw.Draw(image)
|
110 |
+
|
111 |
+
# Load a larger font (adjust the size as needed)
|
112 |
+
font_size = 48 # Example font size
|
113 |
+
try:
|
114 |
+
font = ImageFont.truetype("font.ttf", size=font_size)
|
115 |
+
except IOError:
|
116 |
+
font = ImageFont.load_default()
|
117 |
+
print("Error: cannot open resource, using default font.")
|
118 |
+
|
119 |
+
text = f"Name: {name}, ID: {patient_id}, Result: {label}"
|
120 |
+
|
121 |
+
# Calculate text bounding box
|
122 |
+
text_bbox = draw.textbbox((0, 0), text, font=font)
|
123 |
+
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
124 |
+
text_x = 20
|
125 |
+
text_y = 40
|
126 |
+
padding = 10
|
127 |
+
|
128 |
+
# Draw a filled rectangle for the background
|
129 |
+
draw.rectangle(
|
130 |
+
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
131 |
+
fill="black"
|
132 |
+
)
|
133 |
+
|
134 |
+
# Draw text on top of the rectangle
|
135 |
+
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
136 |
+
|
137 |
+
# Add watermark to the image
|
138 |
+
image_with_watermark = add_watermark(image)
|
139 |
+
|
140 |
+
return image_with_watermark
|
141 |
+
|
142 |
+
# Function to initialize the database
|
143 |
+
def init_db():
|
144 |
+
conn = sqlite3.connect('results.db')
|
145 |
+
c = conn.cursor()
|
146 |
+
c.execute('''CREATE TABLE IF NOT EXISTS results
|
147 |
+
(id INTEGER PRIMARY KEY, name TEXT, patient_id TEXT, input_image BLOB, predicted_image BLOB, result TEXT)''')
|
148 |
+
conn.commit()
|
149 |
+
conn.close()
|
150 |
+
|
151 |
+
# Function to submit result to the database
|
152 |
+
def submit_result(name, patient_id, input_image, predicted_image, result):
|
153 |
+
conn = sqlite3.connect('results.db')
|
154 |
+
c = conn.cursor()
|
155 |
+
|
156 |
+
input_image_np = np.array(input_image)
|
157 |
+
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
158 |
+
input_image_bytes = input_buffer.tobytes()
|
159 |
+
|
160 |
+
predicted_image_np = np.array(predicted_image)
|
161 |
+
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
|
162 |
+
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
|
163 |
+
predicted_image_bytes = predicted_buffer.tobytes()
|
164 |
+
|
165 |
+
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
|
166 |
+
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
|
167 |
+
conn.commit()
|
168 |
+
conn.close()
|
169 |
+
return "Result submitted to database."
|
170 |
+
|
171 |
+
# Function to load and view database
|
172 |
+
def view_database():
|
173 |
+
conn = sqlite3.connect('results.db')
|
174 |
+
c = conn.cursor()
|
175 |
+
c.execute("SELECT * FROM results")
|
176 |
+
rows = c.fetchall()
|
177 |
+
conn.close()
|
178 |
+
|
179 |
+
# Convert to pandas DataFrame
|
180 |
+
df = pd.DataFrame(rows, columns=["ID", "Name", "Patient ID", "Input Image", "Predicted Image", "Result"])
|
181 |
+
|
182 |
+
return df
|
183 |
+
|
184 |
+
# Function to download database or image
|
185 |
+
def download_file(choice):
|
186 |
+
conn = sqlite3.connect('results.db')
|
187 |
+
c = conn.cursor()
|
188 |
+
|
189 |
+
if choice == "Database (.db)":
|
190 |
+
conn.close()
|
191 |
+
return 'results.db'
|
192 |
+
else:
|
193 |
+
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
|
194 |
+
row = c.fetchone()
|
195 |
+
conn.close()
|
196 |
+
if row:
|
197 |
+
image_bytes = row[0]
|
198 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
|
199 |
+
temp_file.write(image_bytes)
|
200 |
+
temp_file.flush() # Ensure all data is written before closing
|
201 |
+
return temp_file.name
|
202 |
+
else:
|
203 |
+
conn.close()
|
204 |
+
raise FileNotFoundError("No images found in the database.")
|
205 |
+
|
206 |
+
# Initialize the database
|
207 |
+
init_db()
|
208 |
|
209 |
# Gradio Interface
|
210 |
def interface(name, patient_id, input_image):
|
211 |
if input_image is None:
|
212 |
return "Please upload an image."
|
213 |
|
|
|
214 |
output_image, raw_result = predict_image(input_image, name, patient_id)
|
215 |
+
submit_status = submit_result(name, patient_id, input_image, output_image, raw_result)
|
216 |
+
|
217 |
+
return output_image, raw_result, submit_status
|
218 |
+
|
219 |
+
# View Database Function
|
220 |
+
def view_db_interface():
|
221 |
+
df = view_database()
|
222 |
+
return df
|
223 |
+
|
224 |
+
# Download Function
|
225 |
+
def download_interface(choice):
|
226 |
+
try:
|
227 |
+
file_path = download_file(choice)
|
228 |
+
with open(file_path, "rb") as file:
|
229 |
+
return file.read(), f"{choice}"
|
230 |
+
except Exception as e:
|
231 |
+
return str(e)
|
232 |
|
|
|
233 |
with gr.Blocks() as demo:
|
234 |
+
with gr.Tabs():
|
235 |
+
with gr.Tab("Image Analyzer and Screener"):
|
236 |
+
gr.Markdown("## Cataract Detection System")
|
237 |
+
with gr.Row():
|
238 |
+
with gr.Column():
|
239 |
+
input_image = gr.Image(label="Upload Image")
|
240 |
+
name = gr.Textbox(label="Patient Name")
|
241 |
+
patient_id = gr.Textbox(label="Patient ID")
|
242 |
+
submit_btn = gr.Button("Submit")
|
243 |
+
|
244 |
+
with gr.Column():
|
245 |
+
output_image = gr.Image(label="Predicted Image")
|
246 |
+
raw_result = gr.Textbox(label="Raw Result")
|
247 |
+
submit_status = gr.Textbox(label="Submission Status")
|
248 |
+
|
249 |
+
submit_btn.click(fn=interface, inputs=[name, patient_id, input_image], outputs=[output_image, raw_result, submit_status])
|
250 |
+
|
251 |
+
with gr.Tab("Database Viewer"):
|
252 |
+
view_db_btn = gr.Button("View Database")
|
253 |
+
database_display = gr.Dataframe()
|
254 |
+
|
255 |
+
view_db_btn.click(fn=view_db_interface, outputs=database_display)
|
256 |
|
257 |
+
with gr.Tab("Download Results"):
|
258 |
+
download_choice = gr.Radio(["Database (.db)", "Predicted Image (.png)"], label="Download Option")
|
259 |
+
download_btn = gr.Button("Download")
|
260 |
|
261 |
+
download_output = gr.File()
|
|
|
262 |
|
263 |
+
download_btn.click(fn=download_interface, inputs=download_choice, outputs=download_output)
|
264 |
|
|
|
265 |
demo.launch()
|