Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
925fada
1
Parent(s):
c5f9028
Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,14 @@ import cv2
|
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
import sqlite3
|
|
|
|
|
7 |
import tempfile
|
8 |
import pandas as pd
|
9 |
|
10 |
# Load YOLOv8 model
|
11 |
model = YOLO("best.pt")
|
12 |
|
13 |
-
# Function to perform prediction
|
14 |
def predict_image(input_image, name, patient_id):
|
15 |
if input_image is None:
|
16 |
return None, "Please Input The Image"
|
@@ -30,51 +31,50 @@ def predict_image(input_image, name, patient_id):
|
|
30 |
# Draw bounding boxes on the image
|
31 |
image_with_boxes = image_np.copy()
|
32 |
raw_predictions = []
|
33 |
-
label = "Unknown" # Default label if no detection
|
34 |
|
35 |
if results[0].boxes:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
|
70 |
raw_predictions_str = "\n".join(raw_predictions)
|
71 |
-
|
72 |
# Convert to PIL image for further processing
|
73 |
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
74 |
|
75 |
# Add text and watermark
|
76 |
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, patient_id, label)
|
77 |
-
|
78 |
return pil_image_with_boxes, raw_predictions_str
|
79 |
|
80 |
# Function to add watermark
|
@@ -82,21 +82,21 @@ def add_watermark(image):
|
|
82 |
try:
|
83 |
logo = Image.open('image-logo.png').convert("RGBA")
|
84 |
image = image.convert("RGBA")
|
85 |
-
|
86 |
# Resize logo
|
87 |
basewidth = 100
|
88 |
wpercent = (basewidth / float(logo.size[0]))
|
89 |
hsize = int((float(wpercent) * logo.size[1]))
|
90 |
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
91 |
-
|
92 |
# Position logo
|
93 |
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
94 |
-
|
95 |
# Composite image
|
96 |
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
97 |
transparent.paste(image, (0, 0))
|
98 |
transparent.paste(logo, position, mask=logo)
|
99 |
-
|
100 |
return transparent.convert("RGB")
|
101 |
except Exception as e:
|
102 |
print(f"Error adding watermark: {e}")
|
@@ -105,7 +105,7 @@ def add_watermark(image):
|
|
105 |
# Function to add text and watermark
|
106 |
def add_text_and_watermark(image, name, patient_id, label):
|
107 |
draw = ImageDraw.Draw(image)
|
108 |
-
|
109 |
# Load a larger font (adjust the size as needed)
|
110 |
font_size = 48 # Example font size
|
111 |
try:
|
@@ -113,9 +113,9 @@ def add_text_and_watermark(image, name, patient_id, label):
|
|
113 |
except IOError:
|
114 |
font = ImageFont.load_default()
|
115 |
print("Error: cannot open resource, using default font.")
|
116 |
-
|
117 |
text = f"Name: {name}, ID: {patient_id}, Result: {label}"
|
118 |
-
|
119 |
# Calculate text bounding box
|
120 |
text_bbox = draw.textbbox((0, 0), text, font=font)
|
121 |
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
@@ -128,13 +128,13 @@ def add_text_and_watermark(image, name, patient_id, label):
|
|
128 |
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
129 |
fill="black"
|
130 |
)
|
131 |
-
|
132 |
# Draw text on top of the rectangle
|
133 |
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
134 |
|
135 |
# Add watermark to the image
|
136 |
image_with_watermark = add_watermark(image)
|
137 |
-
|
138 |
return image_with_watermark
|
139 |
|
140 |
# Function to initialize the database
|
@@ -150,16 +150,16 @@ def init_db():
|
|
150 |
def submit_result(name, patient_id, input_image, predicted_image, result):
|
151 |
conn = sqlite3.connect('results.db')
|
152 |
c = conn.cursor()
|
153 |
-
|
154 |
input_image_np = np.array(input_image)
|
155 |
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
156 |
input_image_bytes = input_buffer.tobytes()
|
157 |
-
|
158 |
predicted_image_np = np.array(predicted_image)
|
159 |
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
|
160 |
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
|
161 |
predicted_image_bytes = predicted_buffer.tobytes()
|
162 |
-
|
163 |
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
|
164 |
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
|
165 |
conn.commit()
|
@@ -170,24 +170,28 @@ def submit_result(name, patient_id, input_image, predicted_image, result):
|
|
170 |
def view_database():
|
171 |
conn = sqlite3.connect('results.db')
|
172 |
c = conn.cursor()
|
173 |
-
c.execute("SELECT
|
174 |
rows = c.fetchall()
|
175 |
conn.close()
|
176 |
-
|
177 |
-
# Convert to pandas DataFrame
|
178 |
-
df = pd.DataFrame(rows, columns=["
|
179 |
-
|
180 |
return df
|
181 |
|
182 |
# Function to download database or image
|
183 |
def download_file(choice):
|
184 |
-
conn = sqlite3.connect('results.db')
|
185 |
-
c = conn.cursor()
|
186 |
-
|
187 |
if choice == "Database (.db)":
|
188 |
-
|
189 |
return 'results.db'
|
|
|
|
|
|
|
|
|
|
|
190 |
else:
|
|
|
|
|
191 |
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
|
192 |
row = c.fetchone()
|
193 |
conn.close()
|
@@ -198,7 +202,6 @@ def download_file(choice):
|
|
198 |
temp_file.flush() # Ensure all data is written before closing
|
199 |
return temp_file.name
|
200 |
else:
|
201 |
-
conn.close()
|
202 |
raise FileNotFoundError("No images found in the database.")
|
203 |
|
204 |
# Initialize the database
|
@@ -211,52 +214,37 @@ def interface(name, patient_id, input_image):
|
|
211 |
|
212 |
output_image, raw_result = predict_image(input_image, name, patient_id)
|
213 |
submit_status = submit_result(name, patient_id, input_image, output_image, raw_result)
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
predict_button = gr.Button("Predict")
|
249 |
-
|
250 |
-
predict_button.click(fn=interface, inputs=[name, patient_id, input_image], outputs=[output_image, raw_result, submit_status])
|
251 |
-
|
252 |
-
with gr.Row():
|
253 |
-
with gr.Column():
|
254 |
-
view_button = gr.Button("View Database")
|
255 |
-
download_choice = gr.Dropdown(label="Download Option", choices=["Database (.db)", "Predicted Image (.png)"])
|
256 |
-
download_button = gr.Button("Download")
|
257 |
-
|
258 |
-
view_button.click(fn=view_db_interface, inputs=[], outputs=[gr.Dataframe()])
|
259 |
-
download_button.click(fn=download_interface, inputs=[download_choice], outputs=[gr.File(), gr.Textbox()])
|
260 |
-
|
261 |
-
# Launch the Gradio app
|
262 |
-
app.launch()
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image, ImageDraw, ImageFont
|
6 |
import sqlite3
|
7 |
+
import base64
|
8 |
+
from io import BytesIO
|
9 |
import tempfile
|
10 |
import pandas as pd
|
11 |
|
12 |
# Load YOLOv8 model
|
13 |
model = YOLO("best.pt")
|
14 |
|
|
|
15 |
def predict_image(input_image, name, patient_id):
|
16 |
if input_image is None:
|
17 |
return None, "Please Input The Image"
|
|
|
31 |
# Draw bounding boxes on the image
|
32 |
image_with_boxes = image_np.copy()
|
33 |
raw_predictions = []
|
|
|
34 |
|
35 |
if results[0].boxes:
|
36 |
+
# Sort the results by confidence and take the highest confidence one
|
37 |
+
highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())
|
38 |
+
|
39 |
+
# Determine the label based on the class index
|
40 |
+
class_index = highest_confidence_result.cls.item()
|
41 |
+
if class_index == 0:
|
42 |
+
label = "Immature"
|
43 |
+
color = (0, 255, 255) # Yellow for Immature
|
44 |
+
elif class_index == 1:
|
45 |
+
label = "Mature"
|
46 |
+
color = (255, 0, 0) # Red for Mature
|
47 |
+
else:
|
48 |
+
label = "Normal"
|
49 |
+
color = (0, 255, 0) # Green for Normal
|
50 |
+
|
51 |
+
confidence = highest_confidence_result.conf.item()
|
52 |
+
xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
|
53 |
+
|
54 |
+
# Draw the bounding box
|
55 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
|
56 |
+
|
57 |
+
# Enlarge font scale and thickness
|
58 |
+
font_scale = 1.0
|
59 |
+
thickness = 2
|
60 |
+
|
61 |
+
# Calculate label background size
|
62 |
+
(text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
|
63 |
+
cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
|
64 |
+
|
65 |
+
# Put the label text with black background
|
66 |
+
cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
|
67 |
+
|
68 |
+
raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")
|
69 |
|
70 |
raw_predictions_str = "\n".join(raw_predictions)
|
71 |
+
|
72 |
# Convert to PIL image for further processing
|
73 |
pil_image_with_boxes = Image.fromarray(image_with_boxes)
|
74 |
|
75 |
# Add text and watermark
|
76 |
pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, patient_id, label)
|
77 |
+
|
78 |
return pil_image_with_boxes, raw_predictions_str
|
79 |
|
80 |
# Function to add watermark
|
|
|
82 |
try:
|
83 |
logo = Image.open('image-logo.png').convert("RGBA")
|
84 |
image = image.convert("RGBA")
|
85 |
+
|
86 |
# Resize logo
|
87 |
basewidth = 100
|
88 |
wpercent = (basewidth / float(logo.size[0]))
|
89 |
hsize = int((float(wpercent) * logo.size[1]))
|
90 |
logo = logo.resize((basewidth, hsize), Image.LANCZOS)
|
91 |
+
|
92 |
# Position logo
|
93 |
position = (image.width - logo.width - 10, image.height - logo.height - 10)
|
94 |
+
|
95 |
# Composite image
|
96 |
transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
|
97 |
transparent.paste(image, (0, 0))
|
98 |
transparent.paste(logo, position, mask=logo)
|
99 |
+
|
100 |
return transparent.convert("RGB")
|
101 |
except Exception as e:
|
102 |
print(f"Error adding watermark: {e}")
|
|
|
105 |
# Function to add text and watermark
|
106 |
def add_text_and_watermark(image, name, patient_id, label):
|
107 |
draw = ImageDraw.Draw(image)
|
108 |
+
|
109 |
# Load a larger font (adjust the size as needed)
|
110 |
font_size = 48 # Example font size
|
111 |
try:
|
|
|
113 |
except IOError:
|
114 |
font = ImageFont.load_default()
|
115 |
print("Error: cannot open resource, using default font.")
|
116 |
+
|
117 |
text = f"Name: {name}, ID: {patient_id}, Result: {label}"
|
118 |
+
|
119 |
# Calculate text bounding box
|
120 |
text_bbox = draw.textbbox((0, 0), text, font=font)
|
121 |
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
|
|
|
128 |
[text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
|
129 |
fill="black"
|
130 |
)
|
131 |
+
|
132 |
# Draw text on top of the rectangle
|
133 |
draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)
|
134 |
|
135 |
# Add watermark to the image
|
136 |
image_with_watermark = add_watermark(image)
|
137 |
+
|
138 |
return image_with_watermark
|
139 |
|
140 |
# Function to initialize the database
|
|
|
150 |
def submit_result(name, patient_id, input_image, predicted_image, result):
|
151 |
conn = sqlite3.connect('results.db')
|
152 |
c = conn.cursor()
|
153 |
+
|
154 |
input_image_np = np.array(input_image)
|
155 |
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
156 |
input_image_bytes = input_buffer.tobytes()
|
157 |
+
|
158 |
predicted_image_np = np.array(predicted_image)
|
159 |
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
|
160 |
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
|
161 |
predicted_image_bytes = predicted_buffer.tobytes()
|
162 |
+
|
163 |
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
|
164 |
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
|
165 |
conn.commit()
|
|
|
170 |
def view_database():
|
171 |
conn = sqlite3.connect('results.db')
|
172 |
c = conn.cursor()
|
173 |
+
c.execute("SELECT name, patient_id FROM results")
|
174 |
rows = c.fetchall()
|
175 |
conn.close()
|
176 |
+
|
177 |
+
# Convert to pandas DataFrame for better display in Gradio
|
178 |
+
df = pd.DataFrame(rows, columns=["Name", "Patient ID"])
|
179 |
+
|
180 |
return df
|
181 |
|
182 |
# Function to download database or image
|
183 |
def download_file(choice):
|
|
|
|
|
|
|
184 |
if choice == "Database (.db)":
|
185 |
+
# Provide the path to the database file
|
186 |
return 'results.db'
|
187 |
+
elif choice == "Database (.html)":
|
188 |
+
df = view_database()
|
189 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as temp_file:
|
190 |
+
df.to_html(temp_file.name)
|
191 |
+
return temp_file.name
|
192 |
else:
|
193 |
+
conn = sqlite3.connect('results.db')
|
194 |
+
c = conn.cursor()
|
195 |
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
|
196 |
row = c.fetchone()
|
197 |
conn.close()
|
|
|
202 |
temp_file.flush() # Ensure all data is written before closing
|
203 |
return temp_file.name
|
204 |
else:
|
|
|
205 |
raise FileNotFoundError("No images found in the database.")
|
206 |
|
207 |
# Initialize the database
|
|
|
214 |
|
215 |
output_image, raw_result = predict_image(input_image, name, patient_id)
|
216 |
submit_status = submit_result(name, patient_id, input_image, output_image, raw_result)
|
217 |
+
return output_image, submit_status
|
218 |
+
|
219 |
+
inputs = [
|
220 |
+
gr.Textbox(label="Name"),
|
221 |
+
gr.Textbox(label="Patient ID"),
|
222 |
+
gr.Image(type="pil", label="Input Image")
|
223 |
+
]
|
224 |
+
|
225 |
+
outputs = [
|
226 |
+
gr.Image(label="Output Image"),
|
227 |
+
gr.Textbox(label="Status")
|
228 |
+
]
|
229 |
+
|
230 |
+
# File download interface
|
231 |
+
download_inputs = gr.Radio(["Database (.db)", "Database (.html)", "Image (.png)"], label="Download Type")
|
232 |
+
download_output = gr.File(label="Download File")
|
233 |
+
|
234 |
+
app = gr.Interface(
|
235 |
+
fn=interface,
|
236 |
+
inputs=inputs,
|
237 |
+
outputs=outputs,
|
238 |
+
title="AI Cataract Detector",
|
239 |
+
description="Upload an image, enter the patient's name and ID, and receive a prediction."
|
240 |
+
)
|
241 |
+
|
242 |
+
download_app = gr.Interface(
|
243 |
+
fn=download_file,
|
244 |
+
inputs=download_inputs,
|
245 |
+
outputs=download_output,
|
246 |
+
title="Download Results"
|
247 |
+
)
|
248 |
+
|
249 |
+
# Combine both interfaces in one layout
|
250 |
+
gr.TabbedInterface([app, download_app], ["Prediction", "Download"]).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|