File size: 9,091 Bytes
4cd3714
 
 
 
 
 
925fada
 
dc36253
4cd3714
 
dc36253
4cd3714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc36253
4cd3714
 
 
 
 
 
 
925fada
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc36253
 
925fada
dc36253
4cd3714
 
dc36253
 
925fada
dc36253
 
 
 
 
 
 
925fada
dc36253
 
 
 
 
925fada
dc36253
 
925fada
dc36253
 
 
 
925fada
dc36253
 
 
 
 
 
 
 
925fada
dc36253
 
 
 
 
 
 
925fada
dc36253
925fada
dc36253
 
 
 
 
 
 
 
 
 
 
 
925fada
dc36253
 
 
 
 
925fada
dc36253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925fada
dc36253
 
 
925fada
dc36253
 
 
 
925fada
dc36253
 
 
 
 
 
 
 
 
 
99de52c
dc36253
 
925fada
 
99de52c
 
 
 
 
 
 
 
 
 
925fada
dc36253
 
 
 
 
925fada
dc36253
925fada
2c1e728
 
99de52c
2c1e728
 
99de52c
 
 
 
 
dc36253
99de52c
 
dc36253
 
 
4cd3714
99de52c
2c1e728
99de52c
 
 
 
 
 
 
 
 
 
 
 
2c1e728
99de52c
 
 
 
 
 
 
 
2c1e728
99de52c
2c1e728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import gradio as gr
from ultralytics import YOLO
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import sqlite3
import base64
from io import BytesIO
import tempfile
import pandas as pd

# Load YOLOv8 model
model = YOLO("best.pt")

def predict_image(input_image, name, patient_id):
    if input_image is None:
        return None, "Please Input The Image"

    # Convert Gradio input image (PIL Image) to numpy array
    image_np = np.array(input_image)

    # Ensure the image is in the correct format
    if len(image_np.shape) == 2:  # grayscale to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_GRAY2RGB)
    elif image_np.shape[2] == 4:  # RGBA to RGB
        image_np = cv2.cvtColor(image_np, cv2.COLOR_RGBA2RGB)

    # Perform prediction
    results = model(image_np)

    # Draw bounding boxes on the image
    image_with_boxes = image_np.copy()
    raw_predictions = []

    if results[0].boxes:
        # Sort the results by confidence and take the highest confidence one
        highest_confidence_result = max(results[0].boxes, key=lambda x: x.conf.item())

        # Determine the label based on the class index
        class_index = highest_confidence_result.cls.item()
        if class_index == 0:
            label = "Immature"
            color = (0, 255, 255)  # Yellow for Immature
        elif class_index == 1:
            label = "Mature"
            color = (255, 0, 0)  # Red for Mature
        else:
            label = "Normal"
            color = (0, 255, 0)  # Green for Normal

        confidence = highest_confidence_result.conf.item()
        xmin, ymin, xmax, ymax = map(int, highest_confidence_result.xyxy[0])
        
        # Draw the bounding box
        cv2.rectangle(image_with_boxes, (xmin, ymin), (xmax, ymax), color, 2)
        
        # Enlarge font scale and thickness
        font_scale = 1.0
        thickness = 2
        
        # Calculate label background size
        (text_width, text_height), baseline = cv2.getTextSize(f'{label} {confidence:.2f}', cv2.FONT_HERSHEY_SIMPLEX, font_scale, thickness)
        cv2.rectangle(image_with_boxes, (xmin, ymin - text_height - baseline), (xmin + text_width, ymin), (0, 0, 0), cv2.FILLED)
        
        # Put the label text with black background
        cv2.putText(image_with_boxes, f'{label} {confidence:.2f}', (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 255, 255), thickness)
        
        raw_predictions.append(f"Label: {label}, Confidence: {confidence:.2f}, Box: [{xmin}, {ymin}, {xmax}, {ymax}]")

    raw_predictions_str = "\n".join(raw_predictions)
    
    # Convert to PIL image for further processing
    pil_image_with_boxes = Image.fromarray(image_with_boxes)

    # Add text and watermark
    pil_image_with_boxes = add_text_and_watermark(pil_image_with_boxes, name, patient_id, label)
    
    return pil_image_with_boxes, raw_predictions_str

# Function to add watermark
def add_watermark(image):
    try:
        logo = Image.open('image-logo.png').convert("RGBA")
        image = image.convert("RGBA")
        
        # Resize logo
        basewidth = 100
        wpercent = (basewidth / float(logo.size[0]))
        hsize = int((float(wpercent) * logo.size[1]))
        logo = logo.resize((basewidth, hsize), Image.LANCZOS)
        
        # Position logo
        position = (image.width - logo.width - 10, image.height - logo.height - 10)
        
        # Composite image
        transparent = Image.new('RGBA', (image.width, image.height), (0, 0, 0, 0))
        transparent.paste(image, (0, 0))
        transparent.paste(logo, position, mask=logo)
        
        return transparent.convert("RGB")
    except Exception as e:
        print(f"Error adding watermark: {e}")
        return image

# Function to add text and watermark
def add_text_and_watermark(image, name, patient_id, label):
    draw = ImageDraw.Draw(image)
    
    # Load a larger font (adjust the size as needed)
    font_size = 48  # Example font size
    try:
        font = ImageFont.truetype("font.ttf", size=font_size)
    except IOError:
        font = ImageFont.load_default()
        print("Error: cannot open resource, using default font.")
    
    text = f"Name: {name}, ID: {patient_id}, Result: {label}"
    
    # Calculate text bounding box
    text_bbox = draw.textbbox((0, 0), text, font=font)
    text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
    text_x = 20
    text_y = 40
    padding = 10

    # Draw a filled rectangle for the background
    draw.rectangle(
        [text_x - padding, text_y - padding, text_x + text_width + padding, text_y + text_height + padding],
        fill="black"
    )
    
    # Draw text on top of the rectangle
    draw.text((text_x, text_y), text, fill=(255, 255, 255, 255), font=font)

    # Add watermark to the image
    image_with_watermark = add_watermark(image)
    
    return image_with_watermark

# Function to initialize the database
def init_db():
    conn = sqlite3.connect('results.db')
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS results
                 (id INTEGER PRIMARY KEY, name TEXT, patient_id TEXT, input_image BLOB, predicted_image BLOB, result TEXT)''')
    conn.commit()
    conn.close()

# Function to submit result to the database
def submit_result(name, patient_id, input_image, predicted_image, result):
    conn = sqlite3.connect('results.db')
    c = conn.cursor()
    
    input_image_np = np.array(input_image)
    _, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
    input_image_bytes = input_buffer.tobytes()
    
    predicted_image_np = np.array(predicted_image)
    predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR)  # Ensure correct color conversion
    _, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
    predicted_image_bytes = predicted_buffer.tobytes()
    
    c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)", 
              (name, patient_id, input_image_bytes, predicted_image_bytes, result))
    conn.commit()
    conn.close()
    return "Result submitted to database."

# Function to load and view database
def view_database():
    conn = sqlite3.connect('results.db')
    c = conn.cursor()
    c.execute("SELECT name, patient_id, input_image, predicted_image, result FROM results")
    rows = c.fetchall()
    conn.close()
    
    # Convert to pandas DataFrame for better display in Gradio
    df = pd.DataFrame(rows, columns=["Name", "Patient ID", "Input Image", "Predicted Image", "Raw Result"])
    
    # Decode images from BLOB and convert to displayable format
    def decode_image(image_blob):
        image_np = np.frombuffer(image_blob, dtype=np.uint8)
        image = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
        return image
    
    df["Input Image"] = df["Input Image"].apply(lambda x: decode_image(x))
    df["Predicted Image"] = df["Predicted Image"].apply(lambda x: decode_image(x))
    
    return df

# Function to download database or image
def download_file(choice):
    if choice == "Database (.db)":
        # Provide the path to the database file
        return 'results.db'
    elif choice == "Database (.html)":
        conn = sqlite3.connect('results.db')
        c = conn.cursor()
        c.execute("SELECT name, patient_id, input_image, predicted_image, result FROM results")
        rows = c.fetchall()
        conn.close()
        df = pd.DataFrame(rows, columns=["Name", "Patient ID", "Input Image", "Predicted Image", "Raw Result"])
        html = df.to_html()
        with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as f:
            f.write(html.encode())
            return f.name
    else:
        # Handle other download options if necessary
        pass

# Initialize the database
init_db()

# Define the Gradio interface
with gr.Blocks() as demo:
    with gr.Tab("YOLOv8 Inference"):
        with gr.Row():
            input_image = gr.Image(label="Input Image", type="pil")
        with gr.Row():
            name = gr.Textbox(label="Patient Name")
            patient_id = gr.Textbox(label="Patient ID")
        with gr.Row():
            submit_button = gr.Button("Submit")
            predicted_image = gr.Image(label="Predicted Image")
        with gr.Row():
            result = gr.Textbox(label="Raw Result", lines=5)
        submit_button.click(predict_image, inputs=[input_image, name, patient_id], outputs=[predicted_image, result])
    
    with gr.Tab("View Database"):
        view_button = gr.Button("View Database")
        database_output = gr.DataFrame(label="Database Records")
        view_button.click(view_database, outputs=database_output)
        
        download_choice = gr.Radio(["Database (.db)", "Database (.html)", "Predicted Image (.png)"], label="Choose the file to download:")
        download_button = gr.Button("Download")
        download_button.click(download_file, inputs=download_choice, outputs=gr.File())

# Launch the interface
demo.launch()