Spaces:
Sleeping
Sleeping
ariankhalfani
commited on
Commit
•
99de52c
1
Parent(s):
2c1e728
Update app.py
Browse files
app.py
CHANGED
@@ -151,18 +151,15 @@ def submit_result(name, patient_id, input_image, predicted_image, result):
|
|
151 |
conn = sqlite3.connect('results.db')
|
152 |
c = conn.cursor()
|
153 |
|
154 |
-
# Encode input image
|
155 |
input_image_np = np.array(input_image)
|
156 |
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
157 |
input_image_bytes = input_buffer.tobytes()
|
158 |
|
159 |
-
# Encode predicted image
|
160 |
predicted_image_np = np.array(predicted_image)
|
161 |
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
|
162 |
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
|
163 |
predicted_image_bytes = predicted_buffer.tobytes()
|
164 |
|
165 |
-
# Insert into database
|
166 |
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
|
167 |
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
|
168 |
conn.commit()
|
@@ -173,12 +170,21 @@ def submit_result(name, patient_id, input_image, predicted_image, result):
|
|
173 |
def view_database():
|
174 |
conn = sqlite3.connect('results.db')
|
175 |
c = conn.cursor()
|
176 |
-
c.execute("SELECT name, patient_id, result FROM results")
|
177 |
rows = c.fetchall()
|
178 |
conn.close()
|
179 |
|
180 |
# Convert to pandas DataFrame for better display in Gradio
|
181 |
-
df = pd.DataFrame(rows, columns=["Name", "Patient ID", "Result"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
return df
|
184 |
|
@@ -190,93 +196,44 @@ def download_file(choice):
|
|
190 |
elif choice == "Database (.html)":
|
191 |
conn = sqlite3.connect('results.db')
|
192 |
c = conn.cursor()
|
193 |
-
c.execute("SELECT
|
194 |
rows = c.fetchall()
|
195 |
conn.close()
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
df.to_html(temp_file.name)
|
202 |
-
return temp_file.name
|
203 |
else:
|
204 |
-
|
205 |
-
|
206 |
-
c.execute("SELECT predicted_image FROM results ORDER BY id DESC LIMIT 1")
|
207 |
-
row = c.fetchone()
|
208 |
-
conn.close()
|
209 |
-
if row:
|
210 |
-
image_bytes = row[0]
|
211 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
|
212 |
-
temp_file.write(image_bytes)
|
213 |
-
temp_file.flush() # Ensure all data is written before closing
|
214 |
-
return temp_file.name
|
215 |
-
else:
|
216 |
-
raise FileNotFoundError("No images found in the database.")
|
217 |
|
218 |
# Initialize the database
|
219 |
init_db()
|
220 |
|
221 |
-
# Gradio
|
222 |
-
def interface(name, patient_id, input_image):
|
223 |
-
if input_image is None:
|
224 |
-
return "Please upload an image."
|
225 |
-
|
226 |
-
output_image, raw_result = predict_image(input_image, name, patient_id)
|
227 |
-
submit_status = submit_result(name, patient_id, input_image, output_image, raw_result)
|
228 |
-
|
229 |
-
return output_image, raw_result, submit_status
|
230 |
-
|
231 |
-
# View Database Function
|
232 |
-
def view_db_interface():
|
233 |
-
df = view_database()
|
234 |
-
return df
|
235 |
-
|
236 |
-
# Download Function
|
237 |
-
def download_interface(choice):
|
238 |
-
try:
|
239 |
-
file_path = download_file(choice)
|
240 |
-
with open(file_path, "rb") as file:
|
241 |
-
return file.read(), file_path.split('/')[-1]
|
242 |
-
except FileNotFoundError as e:
|
243 |
-
return str(e), None
|
244 |
-
|
245 |
-
# Gradio Blocks
|
246 |
with gr.Blocks() as demo:
|
247 |
-
with gr.
|
248 |
-
gr.
|
249 |
-
|
250 |
-
gr.
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
253 |
-
with gr.
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
with gr.Row():
|
263 |
-
raw_result = gr.Textbox(label="Raw Result", lines=5)
|
264 |
-
submit_status = gr.Textbox(label="Submission Status")
|
265 |
-
|
266 |
-
submit_btn.click(fn=interface, inputs=[name, patient_id, input_image], outputs=[output_image, raw_result, submit_status])
|
267 |
-
|
268 |
-
with gr.Column():
|
269 |
-
view_db_btn = gr.Button("View Database")
|
270 |
-
db_output = gr.Dataframe(label="Database Records")
|
271 |
-
|
272 |
-
view_db_btn.click(fn=view_db_interface, inputs=[], outputs=[db_output])
|
273 |
-
|
274 |
-
with gr.Column():
|
275 |
-
download_choice = gr.Radio(["Database (.db)", "Predicted Image (.png)", "Database (.html)"], label="Choose the file to download:")
|
276 |
-
download_btn = gr.Button("Download")
|
277 |
-
download_output = gr.File(label="Download File")
|
278 |
-
|
279 |
-
download_btn.click(fn=download_interface, inputs=[download_choice], outputs=[download_output])
|
280 |
|
281 |
-
# Launch the
|
282 |
demo.launch()
|
|
|
151 |
conn = sqlite3.connect('results.db')
|
152 |
c = conn.cursor()
|
153 |
|
|
|
154 |
input_image_np = np.array(input_image)
|
155 |
_, input_buffer = cv2.imencode('.png', cv2.cvtColor(input_image_np, cv2.COLOR_RGB2BGR))
|
156 |
input_image_bytes = input_buffer.tobytes()
|
157 |
|
|
|
158 |
predicted_image_np = np.array(predicted_image)
|
159 |
predicted_image_rgb = cv2.cvtColor(predicted_image_np, cv2.COLOR_RGB2BGR) # Ensure correct color conversion
|
160 |
_, predicted_buffer = cv2.imencode('.png', predicted_image_rgb)
|
161 |
predicted_image_bytes = predicted_buffer.tobytes()
|
162 |
|
|
|
163 |
c.execute("INSERT INTO results (name, patient_id, input_image, predicted_image, result) VALUES (?, ?, ?, ?, ?)",
|
164 |
(name, patient_id, input_image_bytes, predicted_image_bytes, result))
|
165 |
conn.commit()
|
|
|
170 |
def view_database():
|
171 |
conn = sqlite3.connect('results.db')
|
172 |
c = conn.cursor()
|
173 |
+
c.execute("SELECT name, patient_id, input_image, predicted_image, result FROM results")
|
174 |
rows = c.fetchall()
|
175 |
conn.close()
|
176 |
|
177 |
# Convert to pandas DataFrame for better display in Gradio
|
178 |
+
df = pd.DataFrame(rows, columns=["Name", "Patient ID", "Input Image", "Predicted Image", "Raw Result"])
|
179 |
+
|
180 |
+
# Decode images from BLOB and convert to displayable format
|
181 |
+
def decode_image(image_blob):
|
182 |
+
image_np = np.frombuffer(image_blob, dtype=np.uint8)
|
183 |
+
image = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
|
184 |
+
return image
|
185 |
+
|
186 |
+
df["Input Image"] = df["Input Image"].apply(lambda x: decode_image(x))
|
187 |
+
df["Predicted Image"] = df["Predicted Image"].apply(lambda x: decode_image(x))
|
188 |
|
189 |
return df
|
190 |
|
|
|
196 |
elif choice == "Database (.html)":
|
197 |
conn = sqlite3.connect('results.db')
|
198 |
c = conn.cursor()
|
199 |
+
c.execute("SELECT name, patient_id, input_image, predicted_image, result FROM results")
|
200 |
rows = c.fetchall()
|
201 |
conn.close()
|
202 |
+
df = pd.DataFrame(rows, columns=["Name", "Patient ID", "Input Image", "Predicted Image", "Raw Result"])
|
203 |
+
html = df.to_html()
|
204 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.html') as f:
|
205 |
+
f.write(html.encode())
|
206 |
+
return f.name
|
|
|
|
|
207 |
else:
|
208 |
+
# Handle other download options if necessary
|
209 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
# Initialize the database
|
212 |
init_db()
|
213 |
|
214 |
+
# Define the Gradio interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
with gr.Blocks() as demo:
|
216 |
+
with gr.Tab("YOLOv8 Inference"):
|
217 |
+
with gr.Row():
|
218 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
219 |
+
with gr.Row():
|
220 |
+
name = gr.Textbox(label="Patient Name")
|
221 |
+
patient_id = gr.Textbox(label="Patient ID")
|
222 |
+
with gr.Row():
|
223 |
+
submit_button = gr.Button("Submit")
|
224 |
+
predicted_image = gr.Image(label="Predicted Image")
|
225 |
+
with gr.Row():
|
226 |
+
result = gr.Textbox(label="Raw Result", lines=5)
|
227 |
+
submit_button.click(predict_image, inputs=[input_image, name, patient_id], outputs=[predicted_image, result])
|
228 |
|
229 |
+
with gr.Tab("View Database"):
|
230 |
+
view_button = gr.Button("View Database")
|
231 |
+
database_output = gr.DataFrame(label="Database Records")
|
232 |
+
view_button.click(view_database, outputs=database_output)
|
233 |
+
|
234 |
+
download_choice = gr.Radio(["Database (.db)", "Database (.html)", "Predicted Image (.png)"], label="Choose the file to download:")
|
235 |
+
download_button = gr.Button("Download")
|
236 |
+
download_button.click(download_file, inputs=download_choice, outputs=gr.File())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
# Launch the interface
|
239 |
demo.launch()
|