File size: 8,511 Bytes
4473ff3
 
fdf85cd
3331cdd
fdf85cd
4473ff3
 
 
 
 
 
 
 
 
3ac75f7
 
 
 
 
 
4473ff3
 
 
3ac75f7
4473ff3
3ac75f7
 
 
4473ff3
3ac75f7
 
 
 
 
 
4473ff3
3ac75f7
 
 
 
 
fdf85cd
3331cdd
68e342d
 
3331cdd
 
10f042b
 
3331cdd
 
 
 
 
 
 
 
 
72a6c00
 
1c9ceaf
 
 
1519b70
 
 
1c9ceaf
1519b70
36e960e
1519b70
36e960e
1519b70
36e960e
1c9ceaf
1519b70
3331cdd
4473ff3
 
 
98ee328
3331cdd
 
 
4473ff3
 
 
 
 
 
 
 
3331cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61804bb
 
 
 
 
 
 
 
 
 
 
 
 
 
3331cdd
 
 
 
 
fdf85cd
3331cdd
 
fdf85cd
3331cdd
 
fdf85cd
3331cdd
 
 
 
 
 
 
 
 
 
fdf85cd
3331cdd
 
 
 
fdf85cd
3331cdd
fdf85cd
3331cdd
 
 
 
 
 
 
 
 
fdf85cd
3331cdd
fdf85cd
3331cdd
bea07d1
fed5fe3
3331cdd
 
 
 
 
 
bea07d1
3331cdd
fdf85cd
 
3331cdd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Gradio Interface
import gradio as gr
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import requests
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")

processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
image_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

def generate_input(input_type, image=None, text=None):
    # Initialize the input variable
    combined_input = ""

    # Handle image input if chosen
    if input_type == "Image" and image:
        inputs = processor(images=image, return_tensors="pt")
        out = image_model.generate(**inputs)
        image_caption = processor.decode(out[0], skip_special_tokens=True)
        combined_input += image_caption  # Add the image caption to input

    # Handle text input if chosen
    elif input_type == "Text" and text:
        combined_input += text  # Add the text to input

    # Handle both text and image input if chosen
    elif input_type == "Both" and image and text:
        inputs = processor(images=image, return_tensors="pt")
        out = image_model.generate(**inputs)
        image_caption = processor.decode(out[0], skip_special_tokens=True)
        combined_input += image_caption + " " + text  # Combine image caption and text
    
    # If no input, fallback
    if not combined_input:
        combined_input = "No input provided."

    return vector_search(combined_input)

# Load embeddings and metadata
embeddings = np.load("netflix_embeddings.npy")  #created using sentence_transformers on kaggle
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle

# Vector search function
def vector_search(query):
    query_embedding = sentence_model.encode(query)
    similarities = cosine_similarity([query_embedding], embeddings)[0]
    top_n = 3
    top_indices = similarities.argsort()[-top_n:][::-1]
    results = metadata.iloc[top_indices]
    
    # Format results for display
    result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
    return result_text
with gr.Blocks() as demo:
    gr.Markdown("# Netflix Recommendation System")
    gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
   
    input_type = gr.Radio(["Image", "Text", "Both"], label="Select Input Type", type="value")
    image_input = gr.Image(label="Upload Image", type="pil", visible=False)  # Hidden initially
    text_input = gr.Textbox(label="Enter Text Query", placeholder="Enter a description or query here", visible=False)  # Hidden initially
    
    # Based on the selected input type, make the appropriate input visible
    def update_inputs(input_type):
        if input_type == "Image":
            return gr.update(visible=True), gr.update(visible=False)
        elif input_type == "Text":
            return gr.update(visible=False), gr.update(visible=True)
        elif input_type == "Both":
            return gr.update(visible=True), gr.update(visible=True)
    
    input_type.change(fn=update_inputs, inputs=input_type, outputs=[image_input, text_input])
    
    submit_button = gr.Button("Submit")
    output = gr.Textbox(label="Recommendations")

    submit_button.click(fn=generate_input, inputs=[input_type,image_input, text_input], outputs=output)

demo.launch()

# with gr.Blocks() as demo:
#     gr.Markdown("# Netflix Recommendation System")
#     gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
#     query = gr.Textbox(label="Enter your query")
#     output = gr.Textbox(label="Recommendations")
#     submit_button = gr.Button("Submit")
    
#     submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
# import gradio as gr

# # def greet(name):
# #     return "Hello " + name + "!!"
# from sentence_transformers import SentenceTransformer
# import numpy as np
# from sklearn.metrics.pairwise import cosine_similarity
# from datasets import load_dataset
# # Load pre-trained SentenceTransformer model
# embedding_model = SentenceTransformer("thenlper/gte-large")

# # # Example dataset with genres (replace with your actual data)
# # dataset = load_dataset("hugginglearners/netflix-shows")
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# # data = dataset['train']  # Accessing the 'train' split of the dataset

# # # Convert the dataset to a list of dictionaries for easier indexing
# # data_list = list[data]
# # print(data_list)
# # # Combine description and genre for embedding
# # def combine_description_title_and_genre(description, listed_in, title):
# #     return f"{description} Genre: {listed_in} Title: {title}"

# # # Generate embedding for the query
# # def get_embedding(text):
# #     return embedding_model.encode(text)

# # # Vector search function
# # def vector_search(query):
# #     query_embedding = get_embedding(query)
    
# #     # Generate embeddings for the combined description and genre
# #     embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])

# #     # Calculate cosine similarity between the query and all embeddings
# #     similarities = cosine_similarity([query_embedding], embeddings)
# # Load dataset (using the correct dataset identifier for your case)
# dataset = load_dataset("hugginglearners/netflix-shows")

# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
#     return f"{description} Genre: {listed_in} Title: {title}"

# # Generate embedding for the query
# def get_embedding(text):
#     return embedding_model.encode(text)

# # Vector search function
# def vector_search(query):
#     query_embedding = get_embedding(query)
    
#     # Function to generate embeddings for each item in the dataset
#     def generate_embeddings(example):
#         return {
#             'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
#         }

#     # Generate embeddings for the dataset using map
#     embeddings_dataset = dataset["train"].map(generate_embeddings)

#     # Extract embeddings
#     embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])

#     # Calculate cosine similarity between the query and all embeddings
#     similarities = cosine_similarity([query_embedding], embeddings)
#     # # Adjust similarity scores based on ratings
#     # ratings = np.array([item["rating"] for item in data_list])
#     # adjusted_similarities = similarities * ratings.reshape(-1, 1)

#      # Get top N most similar items (e.g., top 3)
#     top_n = 3
#     top_indices = similarities[0].argsort()[-top_n:][::-1]  # Get indices of the top N results
#     top_items = [dataset["train"][i] for i in top_indices]
    
#     # Format the output for display
#     search_result = ""
#     for item in top_items:
#         search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"

#     return search_result

# # Gradio Interface
# def movie_search(query):
#     return vector_search(query)
# with gr.Blocks() as demo:
#     gr.Markdown("# Netflix Recommendation System")
#     gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
#     query = gr.Textbox(label="Enter your query")
#     output = gr.Textbox(label="Recommendations")
#     submit_button = gr.Button("Submit")

#     submit_button.click(fn=movie_search, inputs=query, outputs=output)

# demo.launch()


# # iface = gr.Interface(fn=movie_search, 
# #                      inputs=gr.inputs.Textbox(label="Enter your query"), 
# #                      outputs="text", 
# #                      live=True,
# #                      title="Netflix Recommendation System",
# #                      description="Enter a query to get Netflix recommendations based on description and genre.")

# # iface.launch()


# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# # demo.launch()