Update app.py
Browse files
app.py
CHANGED
@@ -38,15 +38,15 @@ def generate_input(model, image=None, text=None):
|
|
38 |
else:
|
39 |
input = "No input provided."
|
40 |
|
41 |
-
vector_search(input
|
42 |
|
43 |
# Load embeddings and metadata
|
44 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
45 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
46 |
|
47 |
# Vector search function
|
48 |
-
def vector_search(query
|
49 |
-
query_embedding =
|
50 |
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
51 |
top_n = 3
|
52 |
top_indices = similarities.argsort()[-top_n:][::-1]
|
@@ -65,7 +65,7 @@ with gr.Blocks() as demo:
|
|
65 |
submit_button = gr.Button("Submit")
|
66 |
output = gr.Textbox(label="Recommendations")
|
67 |
|
68 |
-
submit_button.click(fn=generate_input, inputs=[image_input, text_input
|
69 |
|
70 |
demo.launch()
|
71 |
|
|
|
38 |
else:
|
39 |
input = "No input provided."
|
40 |
|
41 |
+
return vector_search(input)
|
42 |
|
43 |
# Load embeddings and metadata
|
44 |
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
|
45 |
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
|
46 |
|
47 |
# Vector search function
|
48 |
+
def vector_search(query):
|
49 |
+
query_embedding = sentence_model.encode(query)
|
50 |
similarities = cosine_similarity([query_embedding], embeddings)[0]
|
51 |
top_n = 3
|
52 |
top_indices = similarities.argsort()[-top_n:][::-1]
|
|
|
65 |
submit_button = gr.Button("Submit")
|
66 |
output = gr.Textbox(label="Recommendations")
|
67 |
|
68 |
+
submit_button.click(fn=generate_input, inputs=[image_input, text_input], outputs=output)
|
69 |
|
70 |
demo.launch()
|
71 |
|