Update app.py
Browse files
app.py
CHANGED
@@ -3,8 +3,8 @@ import pandas as pd
|
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
|
5 |
# Load embeddings and metadata
|
6 |
-
embeddings = np.load("
|
7 |
-
metadata = pd.read_csv("
|
8 |
|
9 |
# Vector search function
|
10 |
def vector_search(query, model):
|
@@ -24,6 +24,8 @@ from sentence_transformers import SentenceTransformer
|
|
24 |
|
25 |
model = SentenceTransformer("thenlper/gte-large")
|
26 |
with gr.Blocks() as demo:
|
|
|
|
|
27 |
query = gr.Textbox(label="Enter your query")
|
28 |
output = gr.Textbox(label="Recommendations")
|
29 |
submit_button = gr.Button("Submit")
|
|
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
|
5 |
# Load embeddings and metadata
|
6 |
+
embeddings = np.load("Tesneem/Netflix_Recommendation/netflix_embeddings.npy")
|
7 |
+
metadata = pd.read_csv("Tesneem/Netflix_Recommendation/netflix_metadata.csv")
|
8 |
|
9 |
# Vector search function
|
10 |
def vector_search(query, model):
|
|
|
24 |
|
25 |
model = SentenceTransformer("thenlper/gte-large")
|
26 |
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("# Netflix Recommendation System")
|
28 |
+
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
|
29 |
query = gr.Textbox(label="Enter your query")
|
30 |
output = gr.Textbox(label="Recommendations")
|
31 |
submit_button = gr.Button("Submit")
|