Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,65 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
# def greet(name):
|
4 |
+
# return "Hello " + name + "!!"
|
5 |
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
import numpy as np
|
8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
+
from datasets import load_dataset
|
10 |
+
# Load pre-trained SentenceTransformer model
|
11 |
+
embedding_model = SentenceTransformer("thenlper/gte-large")
|
12 |
+
|
13 |
+
# Example dataset with genres (replace with your actual data)
|
14 |
+
dataset = load_dataset("hugginglearners/netflix-shows")
|
15 |
+
|
16 |
+
# Combine description and genre for embedding
|
17 |
+
def combine_description_title_and_genre(description, listed_in, title):
|
18 |
+
return f"{description} Genre: {listed_in} Title: {title}"
|
19 |
+
|
20 |
+
# Generate embedding for the query
|
21 |
+
def get_embedding(text):
|
22 |
+
return embedding_model.encode(text)
|
23 |
+
|
24 |
+
# Vector search function
|
25 |
+
def vector_search(query):
|
26 |
+
query_embedding = get_embedding(query)
|
27 |
+
|
28 |
+
# Generate embeddings for the combined description and genre
|
29 |
+
embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in dataset])
|
30 |
+
|
31 |
+
# Calculate cosine similarity between the query and all embeddings
|
32 |
+
similarities = cosine_similarity([query_embedding], embeddings)
|
33 |
+
|
34 |
+
# Adjust similarity scores based on ratings
|
35 |
+
ratings = np.array([item["rating"] for item in dataset])
|
36 |
+
adjusted_similarities = similarities * ratings.reshape(-1, 1)
|
37 |
+
|
38 |
+
# Get top N most similar items (e.g., top 3)
|
39 |
+
top_n = 3
|
40 |
+
top_indices = adjusted_similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
|
41 |
+
top_items = [dataset[i] for i in top_indices]
|
42 |
+
|
43 |
+
# Format the output for display
|
44 |
+
search_result = ""
|
45 |
+
for item in top_items:
|
46 |
+
search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}, Rating: {item['rating']}\n"
|
47 |
+
|
48 |
+
return search_result
|
49 |
+
|
50 |
+
# Gradio Interface
|
51 |
+
def movie_search(query):
|
52 |
+
return vector_search(query)
|
53 |
+
|
54 |
+
iface = gr.Interface(fn=movie_search,
|
55 |
+
inputs="text",
|
56 |
+
outputs="text",
|
57 |
+
live=True,
|
58 |
+
title="Netflix Recommendation System",
|
59 |
+
description="Enter a query to get Netflix recommendations based on description and genre.")
|
60 |
+
|
61 |
+
iface.launch()
|
62 |
+
|
63 |
+
|
64 |
+
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
65 |
+
# demo.launch()
|