File size: 21,840 Bytes
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
063b96c
f4e26b8
85d2c7e
 
 
a7b3ed8
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
 
 
 
 
 
 
 
85d2c7e
 
 
a7b3ed8
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
85d2c7e
 
 
 
 
 
 
 
 
 
a7b3ed8
f4e26b8
 
 
a7b3ed8
 
f4e26b8
 
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
 
85d2c7e
f4e26b8
 
 
 
 
 
 
 
85d2c7e
 
 
 
f4e26b8
 
 
 
 
 
 
 
 
 
85d2c7e
 
 
f4e26b8
85d2c7e
f4e26b8
4bae411
 
 
 
f4e26b8
 
 
 
 
85d2c7e
 
 
 
f4e26b8
 
 
 
 
 
85d2c7e
 
f4e26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d2c7e
 
 
f4e26b8
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b07dc9
 
 
 
85d2c7e
 
 
 
 
f4e26b8
 
85d2c7e
 
 
2b07dc9
 
 
 
85d2c7e
2b07dc9
 
 
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
 
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e26b8
 
 
85d2c7e
 
 
 
f4e26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85d2c7e
 
f4e26b8
a7b3ed8
85d2c7e
 
 
a7b3ed8
85d2c7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7b3ed8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
import streamlit as st
from numerize.numerize import numerize
import io
import pandas as pd
from utilities import (format_numbers,decimal_formater,
                       channel_name_formating,
                       load_local_css,set_header,
                       initialize_data,
                       load_authenticator)
from openpyxl import Workbook
from openpyxl.styles import Alignment,Font,PatternFill
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
from classes import class_from_dict
import plotly.graph_objects as go

st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
scenarios_to_compare = []
st.title("Saved Scenarios")
# for k, v in st.session_state.items():
#     if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
#         st.session_state[k] = v
def comparison_scenarios_df():
    
    ## create summary page
    if len(scenarios_to_compare) == 0:
        return
    summary_df_spend = None
    summary_df_prospect = None
    # summary_df_efficiency = None
    #=print(scenarios_to_download)
    for scenario_name in scenarios_to_compare:
        scenario_dict =  st.session_state['saved_scenarios'][scenario_name]
        _spends = []
        column_names = ['Date']
        _sales = None
        dates = None
        summary_rows_spend = []
        summary_rows_prospects = []
        for channel in scenario_dict['channels']:
            if dates is None:
                dates = channel.get('dates')
                _spends.append(dates)
            if _sales is None:
                _sales = channel.get('modified_sales')
            else:
                _sales += channel.get('modified_sales')
            _spends.append(channel.get('modified_spends') * channel.get('conversion_rate'))
            column_names.append(channel.get('name'))
            
            name_mod = channel_name_formating(channel['name'])
            summary_rows_spend.append([name_mod,
                                channel.get('modified_total_spends') * channel.get('conversion_rate')])
            summary_rows_prospects.append([name_mod,
                                channel.get('modified_total_sales')])

        _spends.append(_sales)
        # column_names.append('NRPU')
        # scenario_df = pd.DataFrame(_spends).T
        # scenario_df.columns = column_names
           
        # summary_rows.append(['Total',
                        # scenario_dict.get('modified_total_spends') ,
                        # scenario_dict.get('modified_total_sales'),
                        # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
                        # '-',
                        # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')])
        # columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
        # columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','NRPU','ROI','MROI','Spends per NRPU']], names=["first", "second"]))
        columns_index = ['Channel',scenario_name]
        if summary_df_spend is None:
            summary_df_spend = pd.DataFrame(summary_rows_spend, columns = columns_index)
            summary_df_spend = summary_df_spend.set_index('Channel')
        else:
            _df = pd.DataFrame(summary_rows_spend, columns = columns_index)
            _df = _df.set_index('Channel')
            summary_df_spend = summary_df_spend.merge(_df, left_index=True, right_index=True)

        if summary_df_prospect is None:
            summary_df_prospect = pd.DataFrame(summary_rows_prospects, columns = columns_index)
            summary_df_prospect = summary_df_prospect.set_index('Channel')
        else:
            _df = pd.DataFrame(summary_rows_prospects, columns = columns_index)
            _df = _df.set_index('Channel')
            summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True)
    st.session_state['disable_download_button'] = False

    efficiency_df = pd.DataFrame(index = summary_df_prospect.index)

    for c in summary_df_spend.columns:
        efficiency_df[c] = (summary_df_prospect[c]/summary_df_prospect[c].sum())/(summary_df_spend[c]/summary_df_spend[c].sum())
        efficiency_df[c] = efficiency_df[c].round(2)
        
    return summary_df_spend,summary_df_prospect,efficiency_df



def plot_comparison_chart(df,metric):
    
    # Create traces for each column
    traces = []
    for column in df.columns:
        traces.append(go.Bar(
            x=df.index,
            y=df[column],
            name=column,
            text=df[column].apply(numerize),  # Adding text for each point
            textposition='outside', 
            hoverinfo='x+y+text',
        ))

    # Create the layout
    layout = go.Layout(
        title='Comparing '+ metric,
        xaxis_title="Channels",
        yaxis_title=metric,
        barmode='group'
    )

    # Create the figure
    fig = go.Figure(data=traces, layout=layout)

    return fig

def create_comparison_plots():
    # comparison_scenarios_df()
    spends_df, prospects_df, efficiency_df = comparison_scenarios_df()
    # st.dataframe(spends_df)
    st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
    st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
    st.plotly_chart(plot_comparison_chart(efficiency_df,"Efficiency"),use_container_width=True)
    
def create_scenario_summary(scenario_dict):
    summary_rows = []
    actual_total_spends = scenario_dict.get('actual_total_spends'), 
    modified_total_spends = scenario_dict.get('modified_total_spends'),
    actual_total_sales = scenario_dict.get('actual_total_sales'), 
    modified_total_sales = scenario_dict.get('modified_total_sales')
    # st.write(modified_total_spends[0])
    # st.write(actual_total_spends[0])
    # st.write(modified_total_sales)
    # st.write(actual_total_sales[0])
    # st.write(modified_total_spends[0])
    for channel_dict in scenario_dict['channels']:
        # st.write(channel_dict['name'])
        name_mod = channel_name_formating(channel_dict['name'])
        summary_rows.append([name_mod,
                             channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
                             channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate'),
                             channel_dict.get('actual_total_sales') ,
                             channel_dict.get('modified_total_sales'),
                            #  channel_dict.get('modified_total_sales')/modified_total_spends[0],
                            #  channel_dict.get('modified_total_sales')/modified_total_spends[0]

                            #  1,2
                            (channel_dict.get('actual_total_sales') /actual_total_sales[0])/(channel_dict.get('actual_total_spends') /actual_total_spends[0] ),
                            (channel_dict.get('modified_total_sales') /modified_total_sales )/(channel_dict.get('modified_total_spends') /modified_total_spends[0] )      
                            #   #                       #  channel_dict.get('actual_mroi'), 
                            #  channel_dict.get('modified_mroi'),
                            #  channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('actual_total_sales'),
                            #  channel_dict.get('modified_total_spends') * channel_dict.get('conversion_rate') / channel_dict.get('modified_total_sales')
                            ])
        
    summary_rows.append(['Total',
                         scenario_dict.get('actual_total_spends'), 
                         scenario_dict.get('modified_total_spends'),
                         scenario_dict.get('actual_total_sales'), 
                         scenario_dict.get('modified_total_sales'),
                         1.0,
                         1.0
                        #  scenario_dict.get('actual_total_sales') / scenario_dict.get('actual_total_spends'),
                        #  scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
                        #  '-',
                        #  '-',
                        #  scenario_dict.get('actual_total_spends') / scenario_dict.get('actual_total_sales'),
                        #  scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
                        ])
    
    adf = pd.DataFrame(summary_rows)
    # st.write(adf.columns)
    
    adf.columns = ["1","2","3","4","5","6","7"]
    adf.index = adf["1"].to_list() #["1","2","3","4","5","6","7","8","9","10","11","12","13","14"]
    adf.drop(columns= ["1"],inplace= True)
    # columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["",""])
    # columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""]))
    columns_index = pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""])
    adf.columns = columns_index
    return  adf # pd.DataFrame(summary_rows, columns=columns_index)
    

   
def summary_df_to_worksheet(df, ws):
    heading_fill = PatternFill(fill_type='solid',start_color='FFFFFFFF',end_color='FFFFFFFF')

    # Define border style
    border_style = Border(
        left=Side(border_style='thin', color='00000000'),
        right=Side(border_style='thin', color='00000000'),
        top=Side(border_style='thin', color='00000000'),
        bottom=Side(border_style='thin', color='00000000')
    )
    number_format = '0.00'  
    for j,header in enumerate(df.columns.values):
        col = j + 1
        for i in range(1,3):
            ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
            ws.cell(row=i,column=j+1).fill = heading_fill
            # ws.cell.border = border_style
        # if  col > 1 and (col - 6)%5==0:    
        #     ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
        #     ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
        #     # ws.cell.border = border_style
    # Apply borders to all cells, including empty cells
    for row in ws.iter_rows():
        for cell in row:
            cell.border = border_style

    for i,row in enumerate(df.itertuples()):
        for j,value in enumerate(row):
            if j == 0:
                continue
            # elif (j-2)%4 == 0 or (j-3)%4 == 0:
            #     ws.cell(row=i+3, column = j, value=value)
            #     # cell.border = border_style
            #     # .number_format = '$#,##0.0' 
            #     if isinstance(value, (int, float)):
            #         cell.number_format = number_format
            else:
                ws.cell(row=i+3, column = j, value=value)
                # cell.border = border_style
                if isinstance(value, (int, float)):
                    cell.number_format = '$#,##0.0'
                    # cell.number_format = number_format
    # Auto-size columns
    for col in ws.columns:
        max_length = 15
        column = col[0].column_letter
        for cell in col:
            try:
                if len(str(cell.value)) > max_length:
                    max_length = len(cell.value)
            except:
                pass
        adjusted_width = (max_length + 2)
        ws.column_dimensions[column].width = adjusted_width
   
from openpyxl.utils import get_column_letter
from openpyxl.styles import Font, PatternFill
from openpyxl.styles import PatternFill, Font, Alignment, Border, Side
import logging

def scenario_df_to_worksheet(df, ws):
    heading_fill = PatternFill(start_color='FF11B6BD', end_color='FF11B6BD', fill_type='solid')
    
    for j, header in enumerate(df.columns.values):
        cell = ws.cell(row=1, column=j + 1, value=header)
        cell.font = Font(bold=True, color='FF11B6BD')
        cell.fill = heading_fill

    for i, row in enumerate(df.itertuples()):
        for j, value in enumerate(row[1:], start=1):  # Start from index 1 to skip the index column
            try:
                cell = ws.cell(row=i + 2, column=j, value=value)
                if isinstance(value, (int, float)):
                    cell.number_format = '$#,##0.0'
                elif isinstance(value, str):
                    cell.value = value[:32767]
                else:
                    cell.value = str(value)
            except ValueError as e:
                logging.error(f"Error assigning value '{value}' to cell {get_column_letter(j)}{i+2}: {e}")
                cell.value = None  # Assign None to the cell where the error occurred

    return ws





   
def download_scenarios():
    """
    Makes a excel with all saved scenarios and saves it locally
    """
    ## create summary page
    if len(scenarios_to_download) == 0:
        return
    wb = Workbook()
    wb.iso_dates = True
    wb.remove(wb.active)
    st.session_state['xlsx_buffer'] = io.BytesIO()
    summary_df = None
    #print(scenarios_to_download)
    for scenario_name in scenarios_to_download:
        scenario_dict =  st.session_state['saved_scenarios'][scenario_name]
        _spends = []
        column_names = ['Date']
        _sales = None
        dates = None
        summary_rows = []
        for channel in scenario_dict['channels']:
            if dates is None:
                dates = channel.get('dates')
                _spends.append(dates)
            if _sales is None:
                _sales = channel.get('modified_sales')
            else:
                _sales += channel.get('modified_sales')
            _spends.append(channel.get('modified_spends') * channel.get('conversion_rate'))
            column_names.append(channel.get('name'))
            
            name_mod = channel_name_formating(channel['name'])
            summary_rows.append([name_mod,
                                channel.get('modified_total_spends') * channel.get('conversion_rate') ,
                                channel.get('modified_total_sales'),
                                # channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate'),
                                # channel.get('modified_mroi'),
                                # channel.get('modified_total_sales') / channel.get('modified_total_spends') * channel.get('conversion_rate')
                                ])
        _spends.append(_sales)
        column_names.append('NRPU')
        scenario_df = pd.DataFrame(_spends).T
        scenario_df.columns = column_names
        ## write to sheet
        # ws = wb.create_sheet(scenario_name)
        # scenario_df_to_worksheet(scenario_df, ws)    
        summary_rows.append(['Total',
                        scenario_dict.get('modified_total_spends') ,
                        scenario_dict.get('modified_total_sales'),
                        # scenario_dict.get('modified_total_sales') / scenario_dict.get('modified_total_spends'),
                        # '-',
                        # scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
                        ])
        columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["first", "second"])
        columns_index = columns_index.append(pd.MultiIndex.from_product([[scenario_name],['Spends','Prospects',
                                                                                        #   'ROI','MROI','Spends per NRPU'
                                                                                        ]], names=["first", "second"]))
        if summary_df is None:
            summary_df = pd.DataFrame(summary_rows, columns = columns_index)
            summary_df = summary_df.set_index(('','Channel'))
        else:
            _df = pd.DataFrame(summary_rows, columns = columns_index)
            _df = _df.set_index(('','Channel'))
            summary_df = summary_df.merge(_df, left_index=True, right_index=True)
    ws = wb.create_sheet('Summary',0)
    summary_df_to_worksheet(summary_df.reset_index(), ws)
    wb.save(st.session_state['xlsx_buffer'])
    st.session_state['disable_download_button'] = False

def disable_download_button():
    st.session_state['disable_download_button'] =True

def transform(x):
    if x.name == ("",'Channel'):
        return x
    elif x.name[0] == 'Efficiency' or x.name[0] == 'MROI':
        return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=2),n_decimals=2))
    else:
        return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))

def delete_scenario():
    if selected_scenario in st.session_state['saved_scenarios']:
        del st.session_state['saved_scenarios'][selected_scenario]
        with open('../saved_scenarios.pkl', 'wb') as f:
            pickle.dump(st.session_state['saved_scenarios'],f)     
            
def load_scenario():
    if selected_scenario in st.session_state['saved_scenarios']:
        st.session_state['scenario'] = class_from_dict(selected_scenario_details)
        


authenticator = st.session_state.get('authenticator')
if authenticator is None:
    authenticator = load_authenticator()

name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state.get('authentication_status')

if auth_status == True:
    is_state_initiaized = st.session_state.get('initialized',False)
    if not is_state_initiaized:
        #print("Scenario page state reloaded")
        initialize_data()


    saved_scenarios = st.session_state['saved_scenarios']


    if len(saved_scenarios) ==0:
        st.header('No saved scenarios')
        
    else:
        
        with st.sidebar:
            with st.expander('View Scenario Details'):
                st.markdown("""<hr>""", unsafe_allow_html=True)
                selected_scenario = st.selectbox('Select the scenario',list(saved_scenarios.keys()))
                # selected_scenario = st.radio(
                #     'Pick a scenario to view details',
                #     list(saved_scenarios.keys())
                # )
            with st.expander('Download Scenario'):
                st.markdown("""<hr>""", unsafe_allow_html=True)
                scenarios_to_download = st.multiselect('Select scenarios to download',
                            list(saved_scenarios.keys()))
            
                st.button('Prepare download',on_click=download_scenarios)
                st.download_button(
                        label="Download Scenarios",
                        data=st.session_state['xlsx_buffer'].getvalue(),
                        file_name="scenarios.xlsx",
                        mime="application/vnd.ms-excel",
                        disabled= st.session_state['disable_download_button'],
                        on_click= disable_download_button
                    )
            with st.expander('Compare Scenarios'):
                st.markdown("""<hr>""", unsafe_allow_html=True)
                scenarios_to_compare = st.multiselect('Select scenarios to compare',
                            list(saved_scenarios.keys()))                
                st.button('Compare')
                
            
        column_1, column_2,column_3 = st.columns((6,1,1))
        with column_1:
            st.header(selected_scenario)
        with column_3:
            st.button('Delete scenarios', on_click=delete_scenario)
        # with column_3:
            # st.button('Load Scenario', on_click=load_scenario)
        
        selected_scenario_details = saved_scenarios[selected_scenario]
        
        pd.set_option('display.max_colwidth', 100)
        # st.table(create_scenario_summary(selected_scenario_details))
        # st.table(create_scenario_summary(selected_scenario_details).transform(transform))
        adf = create_scenario_summary(selected_scenario_details).transform(transform)
        # adf1 = adf[('Spends', 'Actual'),
        #     ( 'Spends', 'Simulated'),
        #     ( 'Prospects','Actual'),
        #     ( 'Prospects', 'Simulated')].transform(transform)
        # adf2 = adf[('Efficiency',    'Actual'),
        #     ('Efficiency', 'Simulated')].round(2)
        # st.write(adf.columns)
        # adf = adf.set_index([('',   'Channel')])#, inplace=True)
        # st.table(adf)
        st.markdown(adf.style.set_table_styles(
        [
        #     {
        #     'selector': 'th',
        #     'props': [('background-color', '#1167bd')]
        # },
            # {
            # 'selector' : 'tr:nth-child(even)',
            # 'props' : [('background-color', '#11B6BD')]
            # }
            ]).to_html(),unsafe_allow_html=True)
        st.markdown("<br><br>", unsafe_allow_html=True)
        
    with st.expander('Scenario comparison'):
            st.header("Scenario comparison")
            if len(scenarios_to_compare)== 0:
                st.write("")
            else:
                create_comparison_plots()
        
elif auth_status == False:
    st.error('Username/Password is incorrect')
    
if auth_status != True:
    try:
        username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
        if username_forgot_pw:
            st.success('New password sent securely')
            # Random password to be transferred to user securely
        elif username_forgot_pw == False:
            st.error('Username not found')
    except Exception as e:
        st.error(e)





# create_comparison_plots()