Spaces:
Running
Running
Pragya Jatav
commited on
Commit
·
a7b3ed8
1
Parent(s):
c60e469
version changes
Browse files- Model_Result_Overview.py +18 -7
- Streamlit_functions.py +133 -7
- __pycache__/Streamlit_functions.cpython-310.pyc +0 -0
- __pycache__/classes.cpython-310.pyc +0 -0
- __pycache__/utilities.cpython-310.pyc +0 -0
- classes.py +17 -1
- pages/2_Scenario_Planner.py +346 -115
- pages/3_Saved_Scenarios.py +12 -12
- pages/4_Model Quality.py +0 -57
- summary_df.pkl +1 -1
- utilities.py +2 -0
Model_Result_Overview.py
CHANGED
@@ -112,7 +112,7 @@ if auth_status:
|
|
112 |
|
113 |
# Create two columns for start date and end date input
|
114 |
col1, col2 = st.columns(2)
|
115 |
-
|
116 |
with col1:
|
117 |
default_date = datetime(2024, 1, 28)
|
118 |
start_date = st.date_input("Start Date: ",value=default_date)
|
@@ -121,6 +121,17 @@ if auth_status:
|
|
121 |
default_date = datetime(2024, 2, 24)
|
122 |
end_date = st.date_input("End Date: ",value=default_date)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
# Dropdown menu options
|
125 |
options = [
|
126 |
"Month on Month",
|
@@ -128,7 +139,7 @@ if auth_status:
|
|
128 |
col1, col2 = st.columns(2)
|
129 |
# Create a dropdown menu
|
130 |
with col1:
|
131 |
-
selected_option = st.selectbox('Select a
|
132 |
with col2:
|
133 |
st.write("")
|
134 |
# Waterfall chart
|
@@ -162,10 +173,10 @@ if auth_status:
|
|
162 |
|
163 |
### Media decomp CHART
|
164 |
st.plotly_chart(sf.media_decomp(),use_container_width=True)
|
165 |
-
|
166 |
-
|
167 |
-
# st.
|
168 |
-
#
|
169 |
|
170 |
# def panel_fetch(file_selected):
|
171 |
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
@@ -282,7 +293,7 @@ if auth_status:
|
|
282 |
# col1, col2 = st.columns(2)
|
283 |
# # Create a dropdown menu
|
284 |
# with col1:
|
285 |
-
# selected_option = st.selectbox('Select a
|
286 |
# with col2:
|
287 |
# st.write("")
|
288 |
# # Waterfall chart
|
|
|
112 |
|
113 |
# Create two columns for start date and end date input
|
114 |
col1, col2 = st.columns(2)
|
115 |
+
|
116 |
with col1:
|
117 |
default_date = datetime(2024, 1, 28)
|
118 |
start_date = st.date_input("Start Date: ",value=default_date)
|
|
|
121 |
default_date = datetime(2024, 2, 24)
|
122 |
end_date = st.date_input("End Date: ",value=default_date)
|
123 |
|
124 |
+
# col1, col2 = st.columns(2)
|
125 |
+
# with col1:
|
126 |
+
# fig = sf.pie_spend(start_date,end_date)
|
127 |
+
# st.plotly_chart(fig,use_container_width=True)
|
128 |
+
# with col2:
|
129 |
+
# fig = sf.pie_contributions(start_date,end_date)
|
130 |
+
# st.plotly_chart(fig,use_container_width=True)
|
131 |
+
# st.header("Distribution of Spends and Contributions")
|
132 |
+
fig = sf.pie_charts(start_date,end_date)
|
133 |
+
st.plotly_chart(fig,use_container_width=True)
|
134 |
+
|
135 |
# Dropdown menu options
|
136 |
options = [
|
137 |
"Month on Month",
|
|
|
139 |
col1, col2 = st.columns(2)
|
140 |
# Create a dropdown menu
|
141 |
with col1:
|
142 |
+
selected_option = st.selectbox('Select a comparison', options)
|
143 |
with col2:
|
144 |
st.write("")
|
145 |
# Waterfall chart
|
|
|
173 |
|
174 |
### Media decomp CHART
|
175 |
st.plotly_chart(sf.media_decomp(),use_container_width=True)
|
176 |
+
|
177 |
+
|
178 |
+
# st.write(fig.columns)
|
179 |
+
# st.dataframe(fig)
|
180 |
|
181 |
# def panel_fetch(file_selected):
|
182 |
# raw_data_mmm_df = pd.read_excel(file_selected, sheet_name="RAW DATA MMM")
|
|
|
293 |
# col1, col2 = st.columns(2)
|
294 |
# # Create a dropdown menu
|
295 |
# with col1:
|
296 |
+
# selected_option = st.selectbox('Select a comparison', options)
|
297 |
# with col2:
|
298 |
# st.write("")
|
299 |
# # Waterfall chart
|
Streamlit_functions.py
CHANGED
@@ -12,8 +12,7 @@ from datetime import datetime,timedelta
|
|
12 |
from plotly.subplots import make_subplots
|
13 |
import pandas as pd
|
14 |
import json
|
15 |
-
|
16 |
-
|
17 |
|
18 |
# working_directory = r"C:\Users\PragyaJatav\Downloads\Deliverables\Deliverables\Response Curves 09_07_24\Response Curves Resources"
|
19 |
# os.chdir(working_directory)
|
@@ -80,19 +79,62 @@ contribution_cols = [
|
|
80 |
'Audio_Prospects',
|
81 |
'Email_Prospects']
|
82 |
|
83 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
start_date = pd.to_datetime(start_date)
|
85 |
end_date = pd.to_datetime(end_date)
|
86 |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
87 |
-
data = cur_data[spend_cols].sum().transpose()
|
88 |
data.index = channels
|
89 |
data.columns = ["p"]
|
90 |
# Create a pie chart with custom options
|
91 |
fig = go.Figure(data=[go.Pie(
|
92 |
labels=channels,
|
93 |
-
values=data["p"],
|
94 |
hoverinfo='label+percent',
|
95 |
-
|
|
|
|
|
96 |
|
97 |
)])
|
98 |
|
@@ -102,7 +144,36 @@ def pie1(start_date,end_date):
|
|
102 |
)
|
103 |
|
104 |
# Show the figure
|
105 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def waterfall(start_date,end_date,btn_chart):
|
108 |
# if pd.isnull(start_date) == True :
|
@@ -762,3 +833,58 @@ def model_metrics_table_func():
|
|
762 |
return model_metrics_df.round(2)
|
763 |
|
764 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from plotly.subplots import make_subplots
|
13 |
import pandas as pd
|
14 |
import json
|
15 |
+
from numerize.numerize import numerize
|
|
|
16 |
|
17 |
# working_directory = r"C:\Users\PragyaJatav\Downloads\Deliverables\Deliverables\Response Curves 09_07_24\Response Curves Resources"
|
18 |
# os.chdir(working_directory)
|
|
|
79 |
'Audio_Prospects',
|
80 |
'Email_Prospects']
|
81 |
|
82 |
+
def pie_charts(start_date,end_date):
|
83 |
+
start_date = pd.to_datetime(start_date)
|
84 |
+
end_date = pd.to_datetime(end_date)
|
85 |
+
import plotly.graph_objects as go
|
86 |
+
from plotly.subplots import make_subplots
|
87 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
88 |
+
data1 = pd.DataFrame(cur_data[spend_cols].sum().transpose())
|
89 |
+
data2 = pd.DataFrame(cur_data[contribution_cols].sum().transpose())
|
90 |
+
|
91 |
+
data1.index = channels
|
92 |
+
data1.columns = ["p"]
|
93 |
+
|
94 |
+
data2.index = channels
|
95 |
+
data2.columns = ["p"]
|
96 |
+
|
97 |
+
fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])
|
98 |
+
|
99 |
+
fig.add_trace(go.Pie(labels=channels,
|
100 |
+
values=data1["p"],
|
101 |
+
name="t2",
|
102 |
+
hoverinfo='label+percent',
|
103 |
+
textinfo= 'label+percent',
|
104 |
+
showlegend= False,textfont=dict(size =10),
|
105 |
+
# title="Distribution of Spends"
|
106 |
+
), 1, 1)
|
107 |
+
|
108 |
+
fig.add_trace(go.Pie(labels=channels,
|
109 |
+
values=data2["p"],
|
110 |
+
name="t2",
|
111 |
+
hoverinfo='label+percent',
|
112 |
+
textinfo= 'label+percent',
|
113 |
+
showlegend= False,
|
114 |
+
textfont=dict(size = 10),
|
115 |
+
# title = "Distribution of Contributions"
|
116 |
+
), 1, 2)
|
117 |
+
fig.update_layout(
|
118 |
+
title="Distribution of Spends and Contributions"
|
119 |
+
)
|
120 |
+
|
121 |
+
return fig
|
122 |
+
|
123 |
+
def pie_spend(start_date,end_date):
|
124 |
start_date = pd.to_datetime(start_date)
|
125 |
end_date = pd.to_datetime(end_date)
|
126 |
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
127 |
+
data = pd.DataFrame(cur_data[spend_cols].sum().transpose())
|
128 |
data.index = channels
|
129 |
data.columns = ["p"]
|
130 |
# Create a pie chart with custom options
|
131 |
fig = go.Figure(data=[go.Pie(
|
132 |
labels=channels,
|
133 |
+
values=data["p"],#ype(str)+'<br>'+data.index,
|
134 |
hoverinfo='label+percent',
|
135 |
+
textinfo= 'label+percent',
|
136 |
+
showlegend= False,
|
137 |
+
textfont=dict(size = 10)
|
138 |
|
139 |
)])
|
140 |
|
|
|
144 |
)
|
145 |
|
146 |
# Show the figure
|
147 |
+
return fig
|
148 |
+
def pie_contributions(start_date,end_date):
|
149 |
+
start_date = pd.to_datetime(start_date)
|
150 |
+
end_date = pd.to_datetime(end_date)
|
151 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
152 |
+
data = pd.DataFrame(cur_data[contribution_cols].sum().transpose())
|
153 |
+
data.index = channels
|
154 |
+
data.columns = ["p"]
|
155 |
+
# Create a pie chart with custom options
|
156 |
+
fig = go.Figure(data=[go.Pie(
|
157 |
+
labels=channels,
|
158 |
+
values=data["p"],#ype(str)+'<br>'+data.index,
|
159 |
+
hoverinfo='label+percent',
|
160 |
+
textinfo= 'label+percent',
|
161 |
+
textposition='auto',
|
162 |
+
showlegend= False,
|
163 |
+
textfont=dict(size = 10)
|
164 |
+
|
165 |
+
)])
|
166 |
+
|
167 |
+
# fig.add_annotation(showarrow=False)
|
168 |
+
# Customize the layout
|
169 |
+
fig.update_layout(
|
170 |
+
title="Distribution of Contributions",
|
171 |
+
# margin=dict(t=0, b=0, l=0, r=0)
|
172 |
+
)
|
173 |
+
|
174 |
+
|
175 |
+
# Show the figure
|
176 |
+
return fig
|
177 |
|
178 |
def waterfall(start_date,end_date,btn_chart):
|
179 |
# if pd.isnull(start_date) == True :
|
|
|
833 |
return model_metrics_df.round(2)
|
834 |
|
835 |
|
836 |
+
def scenario_spend_forecasting(delta_df,start_date,end_date):
|
837 |
+
|
838 |
+
key_df = pd.DataFrame()
|
839 |
+
key_df["Channel_name"] = ["Email",
|
840 |
+
"DisplayRetargeting",
|
841 |
+
"\xa0Video",
|
842 |
+
"BroadcastTV",
|
843 |
+
"SocialRetargeting",
|
844 |
+
"Connected&OTTTV",
|
845 |
+
"SearchBrand",
|
846 |
+
"Audio",
|
847 |
+
"SocialProspecting",
|
848 |
+
"CableTV",
|
849 |
+
"DisplayProspecting",
|
850 |
+
"SearchNon-brand",
|
851 |
+
"DigitalPartners"]
|
852 |
+
key_df["Channels"] = [
|
853 |
+
"EMAIL",
|
854 |
+
"DISPLAY RETARGETING",
|
855 |
+
"VIDEO",
|
856 |
+
"BROADCAST TV",
|
857 |
+
"SOCIAL RETARGETING",
|
858 |
+
"CONNECTED & OTT TV",
|
859 |
+
"SEARCH BRAND",
|
860 |
+
"AUDIO",
|
861 |
+
"SOCIAL PROSPECTING",
|
862 |
+
"CABLE TV",
|
863 |
+
"DISPLAY PROSPECTING",
|
864 |
+
"SEARCH NON-BRAND",
|
865 |
+
"DIGITAL PARTNERS"
|
866 |
+
]
|
867 |
+
|
868 |
+
|
869 |
+
start_date = pd.to_datetime(start_date)
|
870 |
+
end_date = pd.to_datetime(end_date)
|
871 |
+
|
872 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
873 |
+
cur_data = cur_data[spend_cols]
|
874 |
+
cur_data.columns = channels
|
875 |
+
data1 = pd.DataFrame(cur_data[channels].sum().transpose()).reset_index()
|
876 |
+
data1.columns = ["Channels","last_year_spends"]
|
877 |
+
|
878 |
+
df_modified = delta_df.merge(key_df,on = "Channel_name",how = "inner")
|
879 |
+
df_modified2 = df_modified.merge(data1,on = "Channels",how ="outer")
|
880 |
+
df_modified2["Forecasted Spends"] =( df_modified2["last_year_spends"]*(1+df_modified2["Delta_percent"]/100)).apply(numerize)
|
881 |
+
df_modified2.index = df_modified2["Channels"]
|
882 |
+
df_modified2["Spend Change"] = df_modified2["Delta_percent"]
|
883 |
+
df_modified2["Last Year Spends"] = df_modified2["last_year_spends"].apply(numerize)
|
884 |
+
df_modified3 = df_modified2[["Last Year Spends","Forecasted Spends","Spend Change"]].transpose()
|
885 |
+
# df_modified2["forecasted_spends"] =
|
886 |
+
# # df_modified = delta_percent
|
887 |
+
# # df_modified["Optimised Spends"] = df_modified["Current Spends"]*
|
888 |
+
return df_modified3
|
889 |
+
|
890 |
+
|
__pycache__/Streamlit_functions.cpython-310.pyc
CHANGED
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
|
|
__pycache__/classes.cpython-310.pyc
CHANGED
Binary files a/__pycache__/classes.cpython-310.pyc and b/__pycache__/classes.cpython-310.pyc differ
|
|
__pycache__/utilities.cpython-310.pyc
CHANGED
Binary files a/__pycache__/utilities.cpython-310.pyc and b/__pycache__/utilities.cpython-310.pyc differ
|
|
classes.py
CHANGED
@@ -58,7 +58,7 @@ class Channel:
|
|
58 |
spends,
|
59 |
response_curve_type,
|
60 |
response_curve_params,
|
61 |
-
bounds,
|
62 |
conversion_rate=1,
|
63 |
modified_spends=None,
|
64 |
penalty=True,
|
@@ -76,6 +76,8 @@ class Channel:
|
|
76 |
self.response_curve_type = response_curve_type
|
77 |
self.response_curve_params = response_curve_params
|
78 |
self.bounds = bounds
|
|
|
|
|
79 |
self.penalty = penalty
|
80 |
|
81 |
self.upper_limit = self.actual_spends.max() + self.actual_spends.std()
|
@@ -160,6 +162,12 @@ class Channel:
|
|
160 |
self.modified_total_sales = self.modified_sales.sum()
|
161 |
self.delta_spends = self.modified_total_spends - self.actual_total_spends
|
162 |
self.delta_sales = self.modified_total_sales - self.actual_total_sales
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
def intialize(self):
|
165 |
self.new_spends = self.old_spends
|
@@ -237,6 +245,14 @@ class Scenario:
|
|
237 |
self.delta_spends = self.modified_total_spends - self.actual_total_spends
|
238 |
self.delta_sales = self.modified_total_sales - self.actual_total_sales
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
# def optimize_spends(self, sales_percent, channels_list, algo="COBYLA"):
|
241 |
# desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
|
242 |
|
|
|
58 |
spends,
|
59 |
response_curve_type,
|
60 |
response_curve_params,
|
61 |
+
bounds,channel_bounds_min,channel_bounds_max,
|
62 |
conversion_rate=1,
|
63 |
modified_spends=None,
|
64 |
penalty=True,
|
|
|
76 |
self.response_curve_type = response_curve_type
|
77 |
self.response_curve_params = response_curve_params
|
78 |
self.bounds = bounds
|
79 |
+
self.channel_bounds_min = channel_bounds_min
|
80 |
+
self.channel_bounds_max = channel_bounds_max
|
81 |
self.penalty = penalty
|
82 |
|
83 |
self.upper_limit = self.actual_spends.max() + self.actual_spends.std()
|
|
|
162 |
self.modified_total_sales = self.modified_sales.sum()
|
163 |
self.delta_spends = self.modified_total_spends - self.actual_total_spends
|
164 |
self.delta_sales = self.modified_total_sales - self.actual_total_sales
|
165 |
+
|
166 |
+
def update_bounds_min(self, modified_bound):
|
167 |
+
self.channel_bounds_min = modified_bound
|
168 |
+
|
169 |
+
def update_bounds_max(self, modified_bound):
|
170 |
+
self.channel_bounds_max = modified_bound
|
171 |
|
172 |
def intialize(self):
|
173 |
self.new_spends = self.old_spends
|
|
|
245 |
self.delta_spends = self.modified_total_spends - self.actual_total_spends
|
246 |
self.delta_sales = self.modified_total_sales - self.actual_total_sales
|
247 |
|
248 |
+
def update_bounds_min(self, channel_name,modified_bound):
|
249 |
+
# self.modify_spends(total_spends)
|
250 |
+
self.channels[channel_name].update_bounds_min(modified_bound)
|
251 |
+
|
252 |
+
def update_bounds_max(self, channel_name,modified_bound):
|
253 |
+
# self.modify_spends(total_spends)
|
254 |
+
self.channels[channel_name].update_bounds_max(modified_bound)
|
255 |
+
|
256 |
# def optimize_spends(self, sales_percent, channels_list, algo="COBYLA"):
|
257 |
# desired_sales = self.actual_total_sales * (1 + sales_percent / 100.0)
|
258 |
|
pages/2_Scenario_Planner.py
CHANGED
@@ -5,6 +5,10 @@ from functools import partial
|
|
5 |
from collections import OrderedDict
|
6 |
from plotly.subplots import make_subplots
|
7 |
import plotly.graph_objects as go
|
|
|
|
|
|
|
|
|
8 |
from utilities import (
|
9 |
format_numbers,format_numbers_f,
|
10 |
load_local_css,
|
@@ -263,7 +267,28 @@ def validate_input(string_input):
|
|
263 |
return False
|
264 |
return True
|
265 |
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
def update_data_by_percent(channel_name):
|
268 |
prev_spends = (
|
269 |
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
@@ -299,6 +324,7 @@ def update_data(channel_name):
|
|
299 |
modified_spends
|
300 |
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
|
301 |
)
|
|
|
302 |
# st.session_state['scenario'].update(channel_name, modified_spends)
|
303 |
# else:
|
304 |
# try:
|
@@ -311,6 +337,8 @@ def update_data(channel_name):
|
|
311 |
# st.write('Invalid input')
|
312 |
|
313 |
|
|
|
|
|
314 |
def select_channel_for_optimization(channel_name):
|
315 |
"""
|
316 |
Marks the given channel for optimization
|
@@ -519,6 +547,8 @@ def plot_response_curves(summary_df_sorted):
|
|
519 |
'Email']
|
520 |
summary_df_sorted.index = summary_df_sorted["Channel_name"]
|
521 |
figures = [rc.response_curves(channels_list[i], summary_df_sorted["Optimized_spend"][channels_list[i]]/104, summary_df_sorted["New_sales"][channels_list[i]]/104) for i in range(13)]
|
|
|
|
|
522 |
|
523 |
# Display figures in a grid layout
|
524 |
cols = st.columns(3) # 4 columns for the grid
|
@@ -739,59 +769,52 @@ def reset_inputs():
|
|
739 |
del st.session_state.total_sales_change_abs_slider
|
740 |
|
741 |
st.session_state["initialized"] = False
|
|
|
|
|
|
|
|
|
742 |
|
|
|
|
|
743 |
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
def scenario_planner_plots():
|
748 |
-
|
749 |
-
with st.expander('Optimized Spends Overview'):
|
750 |
-
# if st.button('Refresh'):
|
751 |
-
# st.experimental_rerun()
|
752 |
-
|
753 |
-
import plotly.graph_objects as go
|
754 |
-
from plotly.subplots import make_subplots
|
755 |
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
|
760 |
-
|
761 |
-
|
762 |
-
spends_data=pd.read_excel('Overview_data_test.xlsx')
|
763 |
-
|
764 |
-
with open('summary_df.pkl', 'rb') as file:
|
765 |
-
summary_df_sorted = pickle.load(file)
|
766 |
#st.write(summary_df_sorted)
|
|
|
|
|
|
|
|
|
|
|
767 |
|
768 |
-
|
769 |
-
|
770 |
-
summary_df_sorted['old_efficiency']=(summary_df_sorted['Old_sales']/summary_df_sorted['Old_sales'].sum())/(summary_df_sorted['Actual_spend']/summary_df_sorted['Actual_spend'].sum())
|
771 |
-
summary_df_sorted['new_efficiency']=(summary_df_sorted['New_sales']/summary_df_sorted['New_sales'].sum())/(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum())
|
772 |
-
|
773 |
-
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
|
774 |
-
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
|
775 |
-
|
776 |
-
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
|
777 |
-
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
|
778 |
|
779 |
-
|
780 |
-
|
781 |
|
|
|
|
|
782 |
|
783 |
|
784 |
-
light_blue = 'rgba(0, 31, 120, 0.7)'
|
785 |
-
light_orange = 'rgba(0, 181, 219, 0.7)'
|
786 |
-
light_green = 'rgba(240, 61, 20, 0.7)'
|
787 |
-
light_red = 'rgba(250, 110, 10, 0.7)'
|
788 |
-
light_purple = 'rgba(255, 191, 69, 0.7)'
|
789 |
|
|
|
|
|
|
|
|
|
|
|
790 |
|
791 |
-
# # Create subplots with one row and two columns
|
792 |
-
# fig = make_subplots(rows=3, cols=1, subplot_titles=("Actual vs. Optimized Spend", "Actual vs. Optimized Contribution", "Actual vs. Optimized ROI"))
|
793 |
|
794 |
-
|
|
|
|
|
795 |
|
796 |
|
797 |
# fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Actual_spend'], name='Actual',
|
@@ -841,11 +864,11 @@ if auth_status == True:
|
|
841 |
# st.plotly_chart(fig,use_container_width=True)
|
842 |
|
843 |
# Create subplots with one row and two columns
|
844 |
-
|
845 |
-
|
846 |
|
847 |
|
848 |
-
|
849 |
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
|
850 |
# +
|
851 |
# ' '+
|
@@ -854,62 +877,67 @@ if auth_status == True:
|
|
854 |
marker_color=light_blue))
|
855 |
|
856 |
|
857 |
-
|
858 |
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
|
859 |
# +
|
860 |
# '</br> (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
|
861 |
,textposition='outside',#textfont=dict(size=30),
|
862 |
marker_color=light_orange))
|
863 |
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
margin=dict(t=40, b=40, l=40, r=40)
|
869 |
)
|
870 |
|
871 |
-
|
872 |
|
873 |
# Add actual vs optimized Contribution
|
874 |
-
|
875 |
-
|
876 |
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
|
877 |
marker_color=light_blue,showlegend=True))
|
878 |
|
879 |
-
|
880 |
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
|
881 |
marker_color=light_orange, showlegend=True))
|
882 |
|
883 |
|
884 |
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
margin=dict(t=40, b=40, l=40, r=40)
|
890 |
# yaxis=dict(range=[0, 0.002]),
|
891 |
)
|
892 |
-
|
893 |
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
|
899 |
marker_color=light_blue,showlegend=True))
|
900 |
-
|
901 |
name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
|
902 |
marker_color=light_orange,showlegend=True))
|
903 |
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
title = "Actual vs. Optimized Efficiency",
|
908 |
margin=dict(t=40, b=40, l=40, r=40),
|
909 |
# yaxis=dict(range=[0, 0.002]),
|
910 |
)
|
911 |
|
912 |
-
|
|
|
|
|
|
|
|
|
|
|
913 |
|
914 |
|
915 |
# Response Metrics
|
@@ -1023,39 +1051,119 @@ if auth_status == True:
|
|
1023 |
st.session_state.total_sales_change_abs_slider = numerize(
|
1024 |
_scenario.actual_total_sales, 1
|
1025 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
1026 |
|
1027 |
-
|
1028 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1029 |
|
1030 |
-
|
1031 |
-
|
1032 |
|
1033 |
-
|
1034 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1035 |
|
1036 |
-
with sub_header[1]:
|
1037 |
-
st.metric(
|
1038 |
-
label=target,
|
1039 |
-
value=format_numbers_f(
|
1040 |
-
float(_scenario.actual_total_sales)
|
1041 |
-
),
|
1042 |
-
)
|
1043 |
|
1044 |
-
|
1045 |
-
st.metric(
|
1046 |
-
label="Spends",
|
1047 |
-
value=format_numbers(_scenario.modified_total_spends),
|
1048 |
-
delta=numerize(_scenario.delta_spends, 1),
|
1049 |
-
)
|
1050 |
|
1051 |
-
|
1052 |
-
|
1053 |
-
|
1054 |
-
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1059 |
|
1060 |
with st.expander("Channel Spends Simulator", expanded=True):
|
1061 |
_columns1 = st.columns((2, 2, 1, 1))
|
@@ -1159,8 +1267,8 @@ if auth_status == True:
|
|
1159 |
with _columns2[2]:
|
1160 |
min_value = round(_scenario.actual_total_sales * 0.5)
|
1161 |
max_value = round(_scenario.actual_total_sales * 1.5)
|
1162 |
-
st.write(min_value)
|
1163 |
-
st.write(max_value)
|
1164 |
# for value in range(min_value, max_value + 1, int(100)):
|
1165 |
# st.write(numerize(value, 1))
|
1166 |
st.session_state["total_sales_change_abs_slider_options"] = [
|
@@ -1202,7 +1310,7 @@ if auth_status == True:
|
|
1202 |
)
|
1203 |
|
1204 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
1205 |
-
_columns = st.columns((2
|
1206 |
with _columns[0]:
|
1207 |
generate_spending_header("Channel")
|
1208 |
with _columns[1]:
|
@@ -1228,34 +1336,60 @@ if auth_status == True:
|
|
1228 |
for i, channel_name in enumerate(channels_list):
|
1229 |
# st.write(channel_name)
|
1230 |
_channel_class = st.session_state["scenario"].channels[channel_name]
|
1231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1232 |
with _columns[0]:
|
1233 |
st.write(channel_name_formating(channel_name))
|
1234 |
bin_placeholder = st.container()
|
1235 |
|
1236 |
with _columns[1]:
|
1237 |
channel_bounds = _channel_class.bounds
|
|
|
1238 |
channel_spends = float(_channel_class.actual_total_spends)
|
1239 |
-
|
1240 |
-
|
|
|
|
|
|
|
|
|
1241 |
##print(st.session_state[channel_name])
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1250 |
|
1251 |
channel_name_current = f"{channel_name}_change"
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1259 |
|
1260 |
with _columns[2]:
|
1261 |
# spends
|
@@ -1474,6 +1608,8 @@ if auth_status == True:
|
|
1474 |
2,
|
1475 |
)
|
1476 |
|
|
|
|
|
1477 |
|
1478 |
|
1479 |
|
@@ -1494,6 +1630,99 @@ if auth_status == True:
|
|
1494 |
|
1495 |
scenario_planner_plots()
|
1496 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1497 |
_columns = st.columns(2)
|
1498 |
# with _columns[0]:
|
1499 |
st.subheader("Save Scenario")
|
@@ -1507,7 +1736,9 @@ if auth_status == True:
|
|
1507 |
"Save",
|
1508 |
on_click=lambda: save_scenario(scenario_name),
|
1509 |
disabled=len(st.session_state["scenario_input"]) == 0,#use_container_width=True
|
|
|
1510 |
)
|
|
|
1511 |
|
1512 |
|
1513 |
|
|
|
5 |
from collections import OrderedDict
|
6 |
from plotly.subplots import make_subplots
|
7 |
import plotly.graph_objects as go
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
from dateutil.relativedelta import relativedelta
|
10 |
+
import time
|
11 |
+
import Streamlit_functions as sf
|
12 |
from utilities import (
|
13 |
format_numbers,format_numbers_f,
|
14 |
load_local_css,
|
|
|
267 |
return False
|
268 |
return True
|
269 |
|
270 |
+
def update_data_bound_min(channel_name):
|
271 |
+
"""
|
272 |
+
Updates the bounds for the given channel
|
273 |
+
"""
|
274 |
+
modified_bounds = st.session_state[f"{channel_name}_lower_bound"]
|
275 |
+
|
276 |
+
# st.session_state['scenario']['channels'][channel_name].channel_bounds_min = st.session_state[f"{channel_name}_lower_bound"]
|
277 |
+
st.session_state['scenario'].update_bounds_min(channel_name,modified_bounds)
|
278 |
+
st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
279 |
+
# st.write(st.session_state["scenario"].channels[channel_name])
|
280 |
+
|
281 |
+
def update_data_bound_max(channel_name):
|
282 |
+
"""
|
283 |
+
Updates the bounds for the given channel
|
284 |
+
"""
|
285 |
+
modified_bounds = st.session_state[f"{channel_name}_upper_bound"]
|
286 |
+
|
287 |
+
# st.session_state['scenario']['channels'][channel_name].channel_bounds_min = st.session_state[f"{channel_name}_lower_bound"]
|
288 |
+
st.session_state['scenario'].update_bounds_max(channel_name,modified_bounds)
|
289 |
+
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_max)
|
290 |
+
# st.write(st.session_state["scenario"].channels[channel_name])
|
291 |
+
|
292 |
def update_data_by_percent(channel_name):
|
293 |
prev_spends = (
|
294 |
st.session_state["scenario"].channels[channel_name].actual_total_spends
|
|
|
324 |
modified_spends
|
325 |
/ st.session_state["scenario"].channels[channel_name].conversion_rate,
|
326 |
)
|
327 |
+
# st.write(hasattr(st.session_state["scenario"], 'update_bounds_min'))
|
328 |
# st.session_state['scenario'].update(channel_name, modified_spends)
|
329 |
# else:
|
330 |
# try:
|
|
|
337 |
# st.write('Invalid input')
|
338 |
|
339 |
|
340 |
+
|
341 |
+
|
342 |
def select_channel_for_optimization(channel_name):
|
343 |
"""
|
344 |
Marks the given channel for optimization
|
|
|
547 |
'Email']
|
548 |
summary_df_sorted.index = summary_df_sorted["Channel_name"]
|
549 |
figures = [rc.response_curves(channels_list[i], summary_df_sorted["Optimized_spend"][channels_list[i]]/104, summary_df_sorted["New_sales"][channels_list[i]]/104) for i in range(13)]
|
550 |
+
|
551 |
+
# for i in range()
|
552 |
|
553 |
# Display figures in a grid layout
|
554 |
cols = st.columns(3) # 4 columns for the grid
|
|
|
769 |
del st.session_state.total_sales_change_abs_slider
|
770 |
|
771 |
st.session_state["initialized"] = False
|
772 |
+
def scenario_planner_plots():
|
773 |
+
with st.expander('Optimized Spends Overview'):
|
774 |
+
# if st.button('Refresh'):
|
775 |
+
# st.experimental_rerun()
|
776 |
|
777 |
+
import plotly.graph_objects as go
|
778 |
+
from plotly.subplots import make_subplots
|
779 |
|
780 |
+
# Define light colors for bars
|
781 |
+
import plotly.graph_objects as go
|
782 |
+
from plotly.subplots import make_subplots
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
783 |
|
784 |
+
st.empty()
|
785 |
+
#st.header('Model Result Analysis')
|
786 |
+
spends_data=pd.read_excel('Overview_data_test.xlsx')
|
787 |
|
788 |
+
with open('summary_df.pkl', 'rb') as file:
|
789 |
+
summary_df_sorted = pickle.load(file)
|
|
|
|
|
|
|
|
|
790 |
#st.write(summary_df_sorted)
|
791 |
+
|
792 |
+
# selected_scenario= st.selectbox('Select Saved Scenarios',['S1','S2'])
|
793 |
+
summary_df_sorted=summary_df_sorted.sort_values(by=['Optimized_spend'],ascending=False)
|
794 |
+
summary_df_sorted['old_efficiency']=(summary_df_sorted['Old_sales']/summary_df_sorted['Old_sales'].sum())/(summary_df_sorted['Actual_spend']/summary_df_sorted['Actual_spend'].sum())
|
795 |
+
summary_df_sorted['new_efficiency']=(summary_df_sorted['New_sales']/summary_df_sorted['New_sales'].sum())/(summary_df_sorted['Optimized_spend']/summary_df_sorted['Optimized_spend'].sum())
|
796 |
|
797 |
+
summary_df_sorted['old_roi']=summary_df_sorted['Old_sales']/summary_df_sorted['Actual_spend']
|
798 |
+
summary_df_sorted['new_roi']=summary_df_sorted['New_sales']/summary_df_sorted['Optimized_spend']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
799 |
|
800 |
+
total_actual_spend = summary_df_sorted['Actual_spend'].sum()
|
801 |
+
total_optimized_spend = summary_df_sorted['Optimized_spend'].sum()
|
802 |
|
803 |
+
actual_spend_percentage = (summary_df_sorted['Actual_spend'] / total_actual_spend) * 100
|
804 |
+
optimized_spend_percentage = (summary_df_sorted['Optimized_spend'] / total_optimized_spend) * 100
|
805 |
|
806 |
|
|
|
|
|
|
|
|
|
|
|
807 |
|
808 |
+
light_blue = 'rgba(0, 31, 120, 0.7)'
|
809 |
+
light_orange = 'rgba(0, 181, 219, 0.7)'
|
810 |
+
light_green = 'rgba(240, 61, 20, 0.7)'
|
811 |
+
light_red = 'rgba(250, 110, 10, 0.7)'
|
812 |
+
light_purple = 'rgba(255, 191, 69, 0.7)'
|
813 |
|
|
|
|
|
814 |
|
815 |
+
# # Create subplots with one row and two columns
|
816 |
+
# fig = make_subplots(rows=3, cols=1, subplot_titles=("Actual vs. Optimized Spend", "Actual vs. Optimized Contribution", "Actual vs. Optimized ROI"))
|
817 |
+
# # Add actual vs optimized spend bars
|
818 |
|
819 |
|
820 |
# fig.add_trace(go.Bar(y=summary_df_sorted['Channel_name'], x=summary_df_sorted['Actual_spend'], name='Actual',
|
|
|
864 |
# st.plotly_chart(fig,use_container_width=True)
|
865 |
|
866 |
# Create subplots with one row and two columns
|
867 |
+
fig = go.Figure()
|
868 |
+
# Add actual vs optimized spend bars
|
869 |
|
870 |
|
871 |
+
fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Actual_spend'], name='Actual',
|
872 |
text=summary_df_sorted['Actual_spend'].apply(format_number) + ' '
|
873 |
# +
|
874 |
# ' '+
|
|
|
877 |
marker_color=light_blue))
|
878 |
|
879 |
|
880 |
+
fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Optimized_spend'], name='Optimized',
|
881 |
text=summary_df_sorted['Optimized_spend'].apply(format_number) + ' '
|
882 |
# +
|
883 |
# '</br> (' + optimized_spend_percentage.astype(int).astype(str) + '%)'
|
884 |
,textposition='outside',#textfont=dict(size=30),
|
885 |
marker_color=light_orange))
|
886 |
|
887 |
+
fig.update_xaxes(title_text="Channels")
|
888 |
+
fig.update_yaxes(title_text="Spends ($)")
|
889 |
+
fig.update_layout(
|
890 |
+
title = "Actual vs. Optimized Spends",
|
891 |
margin=dict(t=40, b=40, l=40, r=40)
|
892 |
)
|
893 |
|
894 |
+
st.plotly_chart(fig,use_container_width=True)
|
895 |
|
896 |
# Add actual vs optimized Contribution
|
897 |
+
fig = go.Figure()
|
898 |
+
fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['Old_sales'],
|
899 |
name='Actual Contribution',text=summary_df_sorted['Old_sales'].apply(format_number),textposition='outside',
|
900 |
marker_color=light_blue,showlegend=True))
|
901 |
|
902 |
+
fig.add_trace(go.Bar(x=summary_df_sorted['Channel_name'], y=summary_df_sorted['New_sales'],
|
903 |
name='Optimized Contribution',text=summary_df_sorted['New_sales'].apply(format_number),textposition='outside',
|
904 |
marker_color=light_orange, showlegend=True))
|
905 |
|
906 |
|
907 |
|
908 |
+
fig.update_yaxes(title_text="Contribution")
|
909 |
+
fig.update_xaxes(title_text="Channels")
|
910 |
+
fig.update_layout(
|
911 |
+
title = "Actual vs. Optimized Contributions",
|
912 |
margin=dict(t=40, b=40, l=40, r=40)
|
913 |
# yaxis=dict(range=[0, 0.002]),
|
914 |
)
|
915 |
+
st.plotly_chart(fig,use_container_width=True)
|
916 |
|
917 |
+
# Add actual vs optimized Efficiency bars
|
918 |
+
fig = go.Figure()
|
919 |
+
summary_df_sorted_p = summary_df_sorted[summary_df_sorted['Channel_name']!="Panel"]
|
920 |
+
fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'], y=summary_df_sorted_p['old_efficiency'],
|
921 |
name='Actual Efficiency', text=summary_df_sorted_p['old_efficiency'].apply(format_number) ,textposition='outside',
|
922 |
marker_color=light_blue,showlegend=True))
|
923 |
+
fig.add_trace(go.Bar(x=summary_df_sorted_p['Channel_name'], y=summary_df_sorted_p['new_efficiency'],
|
924 |
name='Optimized Efficiency',text=summary_df_sorted_p['new_efficiency'].apply(format_number),textposition='outside' ,
|
925 |
marker_color=light_orange,showlegend=True))
|
926 |
|
927 |
+
fig.update_xaxes(title_text="Channels")
|
928 |
+
fig.update_yaxes(title_text="Efficiency")
|
929 |
+
fig.update_layout(
|
930 |
title = "Actual vs. Optimized Efficiency",
|
931 |
margin=dict(t=40, b=40, l=40, r=40),
|
932 |
# yaxis=dict(range=[0, 0.002]),
|
933 |
)
|
934 |
|
935 |
+
st.plotly_chart(fig,use_container_width=True)
|
936 |
+
|
937 |
+
if auth_status == True:
|
938 |
+
authenticator.logout("Logout", "main")
|
939 |
+
st.header("Scenario Planner")
|
940 |
+
|
941 |
|
942 |
|
943 |
# Response Metrics
|
|
|
1051 |
st.session_state.total_sales_change_abs_slider = numerize(
|
1052 |
_scenario.actual_total_sales, 1
|
1053 |
)
|
1054 |
+
|
1055 |
+
if "lower_bound_key" not in st.session_state:
|
1056 |
+
st.session_state["lower_bound_key"] = 10
|
1057 |
+
|
1058 |
+
if "upper_bound_key" not in st.session_state:
|
1059 |
+
st.session_state["upper_bound_key"] = 10
|
1060 |
|
1061 |
+
|
1062 |
+
header_df = pd.DataFrame(index=["Actual","Simulated","Change","Percent Change"],columns=["Spends","Prospects"])
|
1063 |
+
header_df["Spends"]["Actual"] = format_numbers(_scenario.actual_total_spends)
|
1064 |
+
header_df["Spends"]["Simulated"] = format_numbers(_scenario.modified_total_spends)
|
1065 |
+
header_df["Spends"]["Change"] = format_numbers(_scenario.delta_spends) #_scenario.modified_total_spends -_scenario.actual_total_spends
|
1066 |
+
header_df["Spends"]["Percent Change"] = numerize(100*(_scenario.delta_spends/_scenario.actual_total_spends))+'%'
|
1067 |
+
|
1068 |
+
header_df["Prospects"]["Actual"] = format_numbers_f(float(_scenario.actual_total_sales))
|
1069 |
+
header_df["Prospects"]["Simulated"] = format_numbers_f(float(_scenario.modified_total_sales))
|
1070 |
+
header_df["Prospects"]["Change"] = format_numbers_f(_scenario.delta_sales)
|
1071 |
+
header_df["Prospects"]["Percent Change"] = numerize(100*(_scenario.delta_sales/_scenario.actual_total_sales),1)+'%'
|
1072 |
+
|
1073 |
+
# header_df.reset_index(inplace=True)
|
1074 |
+
# # Function to color the index
|
1075 |
+
# def highlight_index(s):
|
1076 |
+
# return ['background-color: lightblue' for _ in s]
|
1077 |
+
|
1078 |
+
# # Function to color the header
|
1079 |
+
# def highlight_header(s):
|
1080 |
+
# return ['background-color: lightgreen' for _ in s]
|
1081 |
+
|
1082 |
+
# # Applying the styles
|
1083 |
+
# styled_df = header_df.style \
|
1084 |
+
# .apply(highlight_index, axis=0, subset=pd.IndexSlice[:, :]) \
|
1085 |
+
# .set_table_styles({
|
1086 |
+
# 'A': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}],
|
1087 |
+
# 'B': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}],
|
1088 |
+
# 'C': [{'selector': 'th', 'props': [('background-color', 'lightgreen')]}]
|
1089 |
+
# })
|
1090 |
+
|
1091 |
+
# # Function to apply arrows based on value
|
1092 |
+
# def format_arrows(val):
|
1093 |
+
# if val > 0:
|
1094 |
+
# return '<span style="color: green;">▲</span>' # Green up arrow
|
1095 |
+
# elif val < 0:
|
1096 |
+
# return '<span style="color: red;">▼</span>' # Red down arrow
|
1097 |
+
# return '' # No arrow for zero
|
1098 |
+
|
1099 |
+
# # Function to format specific rows and exclude the first column
|
1100 |
+
# def apply_row_formatting(df, rows):
|
1101 |
+
# def format_cell(val, row_idx, col_idx):
|
1102 |
+
# if row_idx in rows and col_idx > 0: # Exclude the first column (col_idx > 0)
|
1103 |
+
# return format_arrows(val)
|
1104 |
+
# return '' # No formatting for other cells
|
1105 |
+
|
1106 |
+
# return df.style.apply(lambda x: [format_cell(val, i, col) for i, (val, col) in enumerate(zip(x, range(len(x))))], axis=1)
|
1107 |
|
1108 |
+
# # Apply formatting to 3rd and 4th rows (index 2 and 3)
|
1109 |
+
# styled_df = apply_row_formatting(header_df, [2, 3])
|
1110 |
|
1111 |
+
# st.markdown(styled_df.to_html(escape=False), unsafe_allow_html=True)
|
1112 |
+
|
1113 |
+
st.markdown(header_df.style.set_table_styles
|
1114 |
+
([{'selector': 'th',
|
1115 |
+
'props': [('background-color', '#D3D3D3'),
|
1116 |
+
('font-size', '25px')]},
|
1117 |
+
{
|
1118 |
+
'selector' : 'td:first-child',
|
1119 |
+
'props' : [('background-color', '#D3D3D3'),
|
1120 |
+
('font-size', '25px')]
|
1121 |
+
}
|
1122 |
+
,
|
1123 |
+
{'selector': 'tbody td',
|
1124 |
+
'props': [('font-size', '20px')]}
|
1125 |
+
|
1126 |
+
]).to_html(),unsafe_allow_html=True)
|
1127 |
+
|
1128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1129 |
|
1130 |
+
# styled_df = header_df.style.apply(highlight_first_col, axis=1)
|
|
|
|
|
|
|
|
|
|
|
1131 |
|
1132 |
+
# st.table(styled_df)
|
1133 |
+
|
1134 |
+
|
1135 |
+
# with main_header[0]:
|
1136 |
+
# st.subheader("Actual")
|
1137 |
+
|
1138 |
+
# with main_header[-1]:
|
1139 |
+
# st.subheader("Simulated")
|
1140 |
+
|
1141 |
+
# with sub_header[0]:
|
1142 |
+
# st.metric(label="Spends", value=format_numbers(_scenario.actual_total_spends))
|
1143 |
+
|
1144 |
+
# with sub_header[1]:
|
1145 |
+
# st.metric(
|
1146 |
+
# label=target,
|
1147 |
+
# value=format_numbers_f(
|
1148 |
+
# float(_scenario.actual_total_sales)
|
1149 |
+
# ),
|
1150 |
+
# )
|
1151 |
+
|
1152 |
+
# with sub_header[2]:
|
1153 |
+
# st.metric(
|
1154 |
+
# label="Spends",
|
1155 |
+
# value=format_numbers(_scenario.modified_total_spends),
|
1156 |
+
# delta=numerize(_scenario.delta_spends, 1),
|
1157 |
+
# )
|
1158 |
+
|
1159 |
+
# with sub_header[3]:
|
1160 |
+
# st.metric(
|
1161 |
+
# label=target,
|
1162 |
+
# value=format_numbers_f(
|
1163 |
+
# float(_scenario.modified_total_sales)
|
1164 |
+
# ),
|
1165 |
+
# delta=numerize(_scenario.delta_sales, 1),
|
1166 |
+
# )
|
1167 |
|
1168 |
with st.expander("Channel Spends Simulator", expanded=True):
|
1169 |
_columns1 = st.columns((2, 2, 1, 1))
|
|
|
1267 |
with _columns2[2]:
|
1268 |
min_value = round(_scenario.actual_total_sales * 0.5)
|
1269 |
max_value = round(_scenario.actual_total_sales * 1.5)
|
1270 |
+
# st.write(min_value)
|
1271 |
+
# st.write(max_value)
|
1272 |
# for value in range(min_value, max_value + 1, int(100)):
|
1273 |
# st.write(numerize(value, 1))
|
1274 |
st.session_state["total_sales_change_abs_slider_options"] = [
|
|
|
1310 |
)
|
1311 |
|
1312 |
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
|
1313 |
+
_columns = st.columns((2, 2.5, 1.5, 1.5, 0.5))
|
1314 |
with _columns[0]:
|
1315 |
generate_spending_header("Channel")
|
1316 |
with _columns[1]:
|
|
|
1336 |
for i, channel_name in enumerate(channels_list):
|
1337 |
# st.write(channel_name)
|
1338 |
_channel_class = st.session_state["scenario"].channels[channel_name]
|
1339 |
+
# st.write(st.session_state["scenario"].channels[channel_name])
|
1340 |
+
# st.write(st.session_state["scenario"].channels[channel_name].actual_total_sales)
|
1341 |
+
# st.write(st.session_state["scenario"].channels[channel_name].actual_total_spends)
|
1342 |
+
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_sales)
|
1343 |
+
# st.write(st.session_state["scenario"].channels[channel_name].modified_total_spends)
|
1344 |
+
# st.write(st.session_state["scenario"].channels[channel_name].bounds)
|
1345 |
+
# st.write(st.session_state["scenario"].channels[channel_name].channel_bounds_min)
|
1346 |
+
_columns = st.columns((2, 2.5, 1.5, 1.5, 0.5))
|
1347 |
with _columns[0]:
|
1348 |
st.write(channel_name_formating(channel_name))
|
1349 |
bin_placeholder = st.container()
|
1350 |
|
1351 |
with _columns[1]:
|
1352 |
channel_bounds = _channel_class.bounds
|
1353 |
+
# st.write(channel_bounds)
|
1354 |
channel_spends = float(_channel_class.actual_total_spends)
|
1355 |
+
channel_bounds_min = float(_channel_class.channel_bounds_min)
|
1356 |
+
channel_bounds_max = float(_channel_class.channel_bounds_max)
|
1357 |
+
min_value = float((1 - channel_bounds_min / 100) * channel_spends)
|
1358 |
+
max_value = float((1 + channel_bounds_max / 100) * channel_spends)
|
1359 |
+
# st.write(min_value)
|
1360 |
+
# st.write(max_value)
|
1361 |
##print(st.session_state[channel_name])
|
1362 |
+
_columns_min = st.columns(2)
|
1363 |
+
with _columns_min[0]:
|
1364 |
+
spend_input = st.text_input(
|
1365 |
+
"Absolute",
|
1366 |
+
key=channel_name,
|
1367 |
+
# label_visibility="collapsed",
|
1368 |
+
on_change=partial(update_data, channel_name),
|
1369 |
+
)
|
1370 |
+
channel_name_lower_bound = f"{channel_name}_lower_bound"
|
1371 |
+
channel_bounds_min = st.text_input(
|
1372 |
+
"Lower Bound Percentage",
|
1373 |
+
key = channel_name_lower_bound,
|
1374 |
+
on_change=partial(update_data_bound_min,channel_name),value=10
|
1375 |
+
)
|
1376 |
+
if not validate_input(spend_input):
|
1377 |
+
st.error("Invalid input")
|
1378 |
|
1379 |
channel_name_current = f"{channel_name}_change"
|
1380 |
+
with _columns_min[1]:
|
1381 |
+
st.number_input(
|
1382 |
+
"Percent Change",
|
1383 |
+
key=channel_name_current,
|
1384 |
+
step=1,
|
1385 |
+
on_change=partial(update_data_by_percent, channel_name),
|
1386 |
+
)
|
1387 |
+
channel_name_upper_bound = f"{channel_name}_upper_bound"
|
1388 |
+
channel_bounds_max = st.text_input(
|
1389 |
+
"Upper Bound Percentage",
|
1390 |
+
key = channel_name_upper_bound,
|
1391 |
+
on_change=partial(update_data_bound_max,channel_name),value=10
|
1392 |
+
)
|
1393 |
|
1394 |
with _columns[2]:
|
1395 |
# spends
|
|
|
1608 |
2,
|
1609 |
)
|
1610 |
|
1611 |
+
|
1612 |
+
|
1613 |
|
1614 |
|
1615 |
|
|
|
1630 |
|
1631 |
scenario_planner_plots()
|
1632 |
|
1633 |
+
with st.expander ("View Forecasted spends"):
|
1634 |
+
col1, col2, col3 = st.columns(3)
|
1635 |
+
with col1:
|
1636 |
+
default_date = datetime(2024, 1, 28)
|
1637 |
+
start_date1 = st.date_input("Select Start Date: ",value=default_date) - relativedelta(years=1)
|
1638 |
+
|
1639 |
+
with col2:
|
1640 |
+
default_date = datetime(2024, 2, 24)
|
1641 |
+
end_date1 = st.date_input("Select End Date: ",value=default_date)- relativedelta(years=1)
|
1642 |
+
|
1643 |
+
with col3:
|
1644 |
+
current_date = datetime(2024, 2, 24)
|
1645 |
+
c1, c2, c3 = st.columns(3)
|
1646 |
+
with c1:
|
1647 |
+
if st.button('Next Month'):
|
1648 |
+
start_date1 = current_date- relativedelta(years=1)
|
1649 |
+
end_date1 = current_date + relativedelta(months=1)- relativedelta(years=1)
|
1650 |
+
with c2:
|
1651 |
+
if st.button('Next Quarter'):
|
1652 |
+
start_date1 = current_date- relativedelta(years=1)
|
1653 |
+
end_date1 = current_date + relativedelta(months = 3)- relativedelta(years=1)
|
1654 |
+
with c3:
|
1655 |
+
if st.button('Next Year'):
|
1656 |
+
start_date1 = current_date- relativedelta(years=1)
|
1657 |
+
end_date1 = current_date + relativedelta(months = 12)- relativedelta(years=1)
|
1658 |
+
|
1659 |
+
forecasted_table_df = sf.scenario_spend_forecasting(summary_df_sorted,start_date1,end_date1)
|
1660 |
+
st.table(forecasted_table_df)
|
1661 |
+
|
1662 |
+
st.markdown("""
|
1663 |
+
<style>
|
1664 |
+
.yellow-container {
|
1665 |
+
background-color: #FFFF99;
|
1666 |
+
border: 1px solid #FFD700;
|
1667 |
+
padding: 10px;
|
1668 |
+
border-radius: 5px;
|
1669 |
+
margin-bottom: 10px;
|
1670 |
+
}
|
1671 |
+
</style>
|
1672 |
+
""", unsafe_allow_html=True)
|
1673 |
+
|
1674 |
+
def save_report_forecast(forecasted_table_df):
|
1675 |
+
from io import BytesIO
|
1676 |
+
# excel_file_path = filename+ '.xlsx'
|
1677 |
+
# forecasted_table_df.to_excel(excel_file_path, index=False)
|
1678 |
+
|
1679 |
+
# Convert the DataFrame to an Excel file in memory
|
1680 |
+
excel_file = BytesIO()
|
1681 |
+
with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
|
1682 |
+
forecasted_table_df.to_excel(writer, index=False, sheet_name='Sheet1')
|
1683 |
+
|
1684 |
+
# Seek to the beginning of the BytesIO buffer
|
1685 |
+
excel_file.seek(0)
|
1686 |
+
return excel_file
|
1687 |
+
# message_container = st.empty()
|
1688 |
+
# with message_container:
|
1689 |
+
# st.write(f'<div class="yellow-container">{"Report Saved!"}</div>', unsafe_allow_html=True)
|
1690 |
+
# time.sleep(5)
|
1691 |
+
# st.empty()
|
1692 |
+
|
1693 |
+
st.subheader("Download Report")
|
1694 |
+
report_name = st.text_input(
|
1695 |
+
"Report name",
|
1696 |
+
key="report_input",
|
1697 |
+
placeholder="Report name",
|
1698 |
+
label_visibility="collapsed",
|
1699 |
+
)
|
1700 |
+
|
1701 |
+
|
1702 |
+
st.download_button(
|
1703 |
+
"Download Report",
|
1704 |
+
data = save_report_forecast(forecasted_table_df),
|
1705 |
+
file_name = report_name+".xlsx",
|
1706 |
+
mime="application/vnd.ms-excel",
|
1707 |
+
# on_click=lambda: save_report_forecast(forecasted_table_df,report_name),
|
1708 |
+
disabled=len(st.session_state["report_input"]) == 0,#use_container_width=True
|
1709 |
+
)
|
1710 |
+
|
1711 |
+
# filename = st.text_input("Save Report: ",placeholder="Report name")
|
1712 |
+
# if st.button("Download Report",disabled= (filename != "Report name")):
|
1713 |
+
# excel_file_path = filename+ '.xlsx'
|
1714 |
+
# forecasted_table_df.to_excel(excel_file_path, index=False)
|
1715 |
+
# message_container = st.empty()
|
1716 |
+
|
1717 |
+
|
1718 |
+
# with message_container:
|
1719 |
+
# st.write(f'<div class="yellow-container">{"Report Saved!"}</div>', unsafe_allow_html=True)
|
1720 |
+
# time.sleep(0.5)
|
1721 |
+
# st.empty()
|
1722 |
+
|
1723 |
+
# on_click=lambda: save_scenario(scenario_name),
|
1724 |
+
# disabled=len(st.session_state["scenario_input"]) == 0,#use_container_width=True
|
1725 |
+
|
1726 |
_columns = st.columns(2)
|
1727 |
# with _columns[0]:
|
1728 |
st.subheader("Save Scenario")
|
|
|
1736 |
"Save",
|
1737 |
on_click=lambda: save_scenario(scenario_name),
|
1738 |
disabled=len(st.session_state["scenario_input"]) == 0,#use_container_width=True
|
1739 |
+
|
1740 |
)
|
1741 |
+
|
1742 |
|
1743 |
|
1744 |
|
pages/3_Saved_Scenarios.py
CHANGED
@@ -23,7 +23,7 @@ set_header()
|
|
23 |
# for k, v in st.session_state.items():
|
24 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
25 |
# st.session_state[k] = v
|
26 |
-
def
|
27 |
|
28 |
## create summary page
|
29 |
if len(scenarios_to_compare) == 0:
|
@@ -91,7 +91,7 @@ def comparision_scenarios_df():
|
|
91 |
|
92 |
|
93 |
|
94 |
-
def
|
95 |
|
96 |
# Create traces for each column
|
97 |
traces = []
|
@@ -107,7 +107,7 @@ def plot_comparision_chart(df,metric):
|
|
107 |
|
108 |
# Create the layout
|
109 |
layout = go.Layout(
|
110 |
-
title='Scenario
|
111 |
xaxis_title="Channels",
|
112 |
yaxis_title=metric,
|
113 |
barmode='group'
|
@@ -118,12 +118,12 @@ def plot_comparision_chart(df,metric):
|
|
118 |
|
119 |
return fig
|
120 |
|
121 |
-
def
|
122 |
-
|
123 |
-
spends_df, prospects_df =
|
124 |
|
125 |
-
st.plotly_chart(
|
126 |
-
st.plotly_chart(
|
127 |
|
128 |
def create_scenario_summary(scenario_dict):
|
129 |
summary_rows = []
|
@@ -397,12 +397,12 @@ if auth_status == True:
|
|
397 |
]).to_html(),unsafe_allow_html=True)
|
398 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
399 |
|
400 |
-
with st.expander('Scenario
|
401 |
-
st.header("Scenario
|
402 |
if len(scenarios_to_compare)== 0:
|
403 |
st.write("")
|
404 |
else:
|
405 |
-
|
406 |
|
407 |
elif auth_status == False:
|
408 |
st.error('Username/Password is incorrect')
|
@@ -422,4 +422,4 @@ if auth_status != True:
|
|
422 |
|
423 |
|
424 |
|
425 |
-
#
|
|
|
23 |
# for k, v in st.session_state.items():
|
24 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
25 |
# st.session_state[k] = v
|
26 |
+
def comparison_scenarios_df():
|
27 |
|
28 |
## create summary page
|
29 |
if len(scenarios_to_compare) == 0:
|
|
|
91 |
|
92 |
|
93 |
|
94 |
+
def plot_comparison_chart(df,metric):
|
95 |
|
96 |
# Create traces for each column
|
97 |
traces = []
|
|
|
107 |
|
108 |
# Create the layout
|
109 |
layout = go.Layout(
|
110 |
+
title='Scenario comparison '+ metric,
|
111 |
xaxis_title="Channels",
|
112 |
yaxis_title=metric,
|
113 |
barmode='group'
|
|
|
118 |
|
119 |
return fig
|
120 |
|
121 |
+
def create_comparison_plots():
|
122 |
+
comparison_scenarios_df()
|
123 |
+
spends_df, prospects_df = comparison_scenarios_df()
|
124 |
|
125 |
+
st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
|
126 |
+
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
|
127 |
|
128 |
def create_scenario_summary(scenario_dict):
|
129 |
summary_rows = []
|
|
|
397 |
]).to_html(),unsafe_allow_html=True)
|
398 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
399 |
|
400 |
+
with st.expander('Scenario comparison'):
|
401 |
+
st.header("Scenario comparison")
|
402 |
if len(scenarios_to_compare)== 0:
|
403 |
st.write("")
|
404 |
else:
|
405 |
+
create_comparison_plots()
|
406 |
|
407 |
elif auth_status == False:
|
408 |
st.error('Username/Password is incorrect')
|
|
|
422 |
|
423 |
|
424 |
|
425 |
+
# create_comparison_plots()
|
pages/4_Model Quality.py
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import plotly.express as px
|
5 |
-
import Streamlit_functions as sf
|
6 |
-
import response_curves_model_quality_base as rc1
|
7 |
-
st.set_page_config(
|
8 |
-
layout="wide"
|
9 |
-
)
|
10 |
-
|
11 |
-
|
12 |
-
st.header("Model Quality")
|
13 |
-
st.write("MMM Model Quality")
|
14 |
-
|
15 |
-
st.plotly_chart(sf.mmm_model_quality(),use_container_width=True)
|
16 |
-
|
17 |
-
media_df = sf.media_data()
|
18 |
-
# Create two columns for start date and end date input
|
19 |
-
col1, col2 = st.columns(2)
|
20 |
-
|
21 |
-
st.table(sf.model_metrics_table_func())
|
22 |
-
|
23 |
-
with col1:
|
24 |
-
st.plotly_chart(sf.elasticity(media_df))
|
25 |
-
with col2:
|
26 |
-
st.plotly_chart(sf.half_life(media_df))
|
27 |
-
|
28 |
-
|
29 |
-
# Dropdown menu options
|
30 |
-
options = [
|
31 |
-
'Broadcast TV',
|
32 |
-
'Cable TV',
|
33 |
-
'Connected & OTT TV',
|
34 |
-
'Display Prospecting',
|
35 |
-
'Display Retargeting',
|
36 |
-
'Video',
|
37 |
-
'Social Prospecting',
|
38 |
-
'Social Retargeting',
|
39 |
-
'Search Brand',
|
40 |
-
'Search Non-brand',
|
41 |
-
'Digital Partners',
|
42 |
-
'Audio',
|
43 |
-
'Email']
|
44 |
-
options1 = [
|
45 |
-
'View Line Plot',
|
46 |
-
'View Scattered Plot',
|
47 |
-
"View Both"]
|
48 |
-
col1, col2 = st.columns(2)
|
49 |
-
# Create a dropdown menu
|
50 |
-
with col1:
|
51 |
-
selected_option = st.selectbox('Select a media channel:', options)
|
52 |
-
selected_option2 = st.selectbox('Select a Chart Type', options1)
|
53 |
-
# Display the selected option
|
54 |
-
st.plotly_chart(rc1.response_curves(selected_option,selected_option2))
|
55 |
-
with col2:
|
56 |
-
st.write("")
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
summary_df.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1822
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b3fa465194a44ba02e73683524c7c7af94c746e1cba16191d686109b932270e
|
3 |
size 1822
|
utilities.py
CHANGED
@@ -372,6 +372,8 @@ def initialize_data(
|
|
372 |
"x0": params[3],
|
373 |
},
|
374 |
bounds=np.array([-10, 10]),
|
|
|
|
|
375 |
)
|
376 |
channels[inp_col] = channel
|
377 |
if sales is None:
|
|
|
372 |
"x0": params[3],
|
373 |
},
|
374 |
bounds=np.array([-10, 10]),
|
375 |
+
channel_bounds_min = 10,
|
376 |
+
channel_bounds_max = 10
|
377 |
)
|
378 |
channels[inp_col] = channel
|
379 |
if sales is None:
|