Pragya Jatav commited on
Commit
4bae411
·
1 Parent(s): 5949d90

aesthetic changes 3

Browse files
__pycache__/response_curves_model_quality_base.cpython-310.pyc CHANGED
Binary files a/__pycache__/response_curves_model_quality_base.cpython-310.pyc and b/__pycache__/response_curves_model_quality_base.cpython-310.pyc differ
 
pages/3_Saved_Scenarios.py CHANGED
@@ -211,10 +211,10 @@ def summary_df_to_worksheet(df, ws):
211
  ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
212
  ws.cell(row=i,column=j+1).fill = heading_fill
213
  # ws.cell.border = border_style
214
- if col > 1 and (col - 6)%5==0:
215
- ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
216
- ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
217
- # ws.cell.border = border_style
218
  # Apply borders to all cells, including empty cells
219
  for row in ws.iter_rows():
220
  for cell in row:
 
211
  ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
212
  ws.cell(row=i,column=j+1).fill = heading_fill
213
  # ws.cell.border = border_style
214
+ # if col > 1 and (col - 6)%5==0:
215
+ # ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
216
+ # ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
217
+ # # ws.cell.border = border_style
218
  # Apply borders to all cells, including empty cells
219
  for row in ws.iter_rows():
220
  for cell in row:
response_curves_model_quality_base.py CHANGED
@@ -12,7 +12,7 @@ df= pd.read_csv('response_curves_input_file.csv')
12
  df.dropna(inplace=True)
13
  df['Date'] = pd.to_datetime(df['Date'])
14
  df.reset_index(inplace=True)
15
-
16
  channel_cols = [
17
  'Broadcast TV',
18
  'Cable TV',
@@ -93,7 +93,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
93
  plot_df = pd.DataFrame()
94
 
95
  plot_df[f'{channel}_Spends'] = X
96
-
97
  plot_df['Date'] = df['Date']
98
  plot_df['MAT'] = df['MAT']
99
 
@@ -114,6 +114,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
114
  # print(x_ext_data)
115
  ext_df = pd.DataFrame()
116
  ext_df[f'{channel}_Spends'] = x_ext_data
 
117
  ext_df[fit_col] = y_fit_inv_v2_ext
118
 
119
  ext_df['Date'] = [
@@ -124,7 +125,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
124
 
125
  ext_df['MAT'] = ["ext","ext","ext"]
126
 
127
- print(ext_df)
128
  plot_df= plot_df.append(ext_df)
129
  return plot_df
130
 
 
12
  df.dropna(inplace=True)
13
  df['Date'] = pd.to_datetime(df['Date'])
14
  df.reset_index(inplace=True)
15
+ import random
16
  channel_cols = [
17
  'Broadcast TV',
18
  'Cable TV',
 
93
  plot_df = pd.DataFrame()
94
 
95
  plot_df[f'{channel}_Spends'] = X
96
+ plot_df[f'{channel}_Prospects'] = y
97
  plot_df['Date'] = df['Date']
98
  plot_df['MAT'] = df['MAT']
99
 
 
114
  # print(x_ext_data)
115
  ext_df = pd.DataFrame()
116
  ext_df[f'{channel}_Spends'] = x_ext_data
117
+ ext_df[f'{channel}_Prospects'] = y_fit_inv_v2_ext
118
  ext_df[fit_col] = y_fit_inv_v2_ext
119
 
120
  ext_df['Date'] = [
 
125
 
126
  ext_df['MAT'] = ["ext","ext","ext"]
127
 
128
+ print(ext_df.columns)
129
  plot_df= plot_df.append(ext_df)
130
  return plot_df
131
 
summary_df.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bb50f23e164ddf0cae9b81a28e47f97561d83e444b951bcf2e8192d70eadc7ce
3
  size 1822
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef1d30472601a41557559d3fe1b39fe0a08bfa581a66af23a210e9dc459b750c
3
  size 1822