Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
4bae411
1
Parent(s):
5949d90
aesthetic changes 3
Browse files
__pycache__/response_curves_model_quality_base.cpython-310.pyc
CHANGED
Binary files a/__pycache__/response_curves_model_quality_base.cpython-310.pyc and b/__pycache__/response_curves_model_quality_base.cpython-310.pyc differ
|
|
pages/3_Saved_Scenarios.py
CHANGED
@@ -211,10 +211,10 @@ def summary_df_to_worksheet(df, ws):
|
|
211 |
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
|
212 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
213 |
# ws.cell.border = border_style
|
214 |
-
if col > 1 and (col - 6)%5==0:
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
# Apply borders to all cells, including empty cells
|
219 |
for row in ws.iter_rows():
|
220 |
for cell in row:
|
|
|
211 |
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
|
212 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
213 |
# ws.cell.border = border_style
|
214 |
+
# if col > 1 and (col - 6)%5==0:
|
215 |
+
# ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
216 |
+
# ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
217 |
+
# # ws.cell.border = border_style
|
218 |
# Apply borders to all cells, including empty cells
|
219 |
for row in ws.iter_rows():
|
220 |
for cell in row:
|
response_curves_model_quality_base.py
CHANGED
@@ -12,7 +12,7 @@ df= pd.read_csv('response_curves_input_file.csv')
|
|
12 |
df.dropna(inplace=True)
|
13 |
df['Date'] = pd.to_datetime(df['Date'])
|
14 |
df.reset_index(inplace=True)
|
15 |
-
|
16 |
channel_cols = [
|
17 |
'Broadcast TV',
|
18 |
'Cable TV',
|
@@ -93,7 +93,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
|
|
93 |
plot_df = pd.DataFrame()
|
94 |
|
95 |
plot_df[f'{channel}_Spends'] = X
|
96 |
-
|
97 |
plot_df['Date'] = df['Date']
|
98 |
plot_df['MAT'] = df['MAT']
|
99 |
|
@@ -114,6 +114,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
|
|
114 |
# print(x_ext_data)
|
115 |
ext_df = pd.DataFrame()
|
116 |
ext_df[f'{channel}_Spends'] = x_ext_data
|
|
|
117 |
ext_df[fit_col] = y_fit_inv_v2_ext
|
118 |
|
119 |
ext_df['Date'] = [
|
@@ -124,7 +125,7 @@ def data_output(channel,X,y,y_fit_inv,x_ext_data,y_fit_inv_ext):
|
|
124 |
|
125 |
ext_df['MAT'] = ["ext","ext","ext"]
|
126 |
|
127 |
-
print(ext_df)
|
128 |
plot_df= plot_df.append(ext_df)
|
129 |
return plot_df
|
130 |
|
|
|
12 |
df.dropna(inplace=True)
|
13 |
df['Date'] = pd.to_datetime(df['Date'])
|
14 |
df.reset_index(inplace=True)
|
15 |
+
import random
|
16 |
channel_cols = [
|
17 |
'Broadcast TV',
|
18 |
'Cable TV',
|
|
|
93 |
plot_df = pd.DataFrame()
|
94 |
|
95 |
plot_df[f'{channel}_Spends'] = X
|
96 |
+
plot_df[f'{channel}_Prospects'] = y
|
97 |
plot_df['Date'] = df['Date']
|
98 |
plot_df['MAT'] = df['MAT']
|
99 |
|
|
|
114 |
# print(x_ext_data)
|
115 |
ext_df = pd.DataFrame()
|
116 |
ext_df[f'{channel}_Spends'] = x_ext_data
|
117 |
+
ext_df[f'{channel}_Prospects'] = y_fit_inv_v2_ext
|
118 |
ext_df[fit_col] = y_fit_inv_v2_ext
|
119 |
|
120 |
ext_df['Date'] = [
|
|
|
125 |
|
126 |
ext_df['MAT'] = ["ext","ext","ext"]
|
127 |
|
128 |
+
print(ext_df.columns)
|
129 |
plot_df= plot_df.append(ext_df)
|
130 |
return plot_df
|
131 |
|
summary_df.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1822
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef1d30472601a41557559d3fe1b39fe0a08bfa581a66af23a210e9dc459b750c
|
3 |
size 1822
|