Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
f4e26b8
1
Parent(s):
734939d
aesthetic changes 1
Browse files- Model_Result_Overview.py +30 -6
- Streamlit_functions.py +89 -23
- __pycache__/Streamlit_functions.cpython-310.pyc +0 -0
- __pycache__/classes.cpython-310.pyc +0 -0
- __pycache__/response_curves_model_quality.cpython-310.pyc +0 -0
- __pycache__/response_curves_model_quality_base.cpython-310.pyc +0 -0
- __pycache__/utilities.cpython-310.pyc +0 -0
- __pycache__/utilities_with_panel.cpython-310.pyc +0 -0
- pages/1_Model_Quality.py +6 -6
- pages/3_Saved_Scenarios.py +98 -33
- response_curves_model_quality_base.py +1 -0
- summary_df.pkl +1 -1
- utilities.py +17 -1
Model_Result_Overview.py
CHANGED
|
@@ -29,6 +29,7 @@ st.set_page_config(layout='wide')
|
|
| 29 |
load_local_css('styles.css')
|
| 30 |
set_header()
|
| 31 |
|
|
|
|
| 32 |
|
| 33 |
def get_random_effects(media_data, panel_col, mdf):
|
| 34 |
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
|
@@ -107,19 +108,22 @@ if auth_status:
|
|
| 107 |
a=1
|
| 108 |
|
| 109 |
# st.header("")
|
| 110 |
-
st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
|
| 111 |
#### Input Select Start and End Date
|
| 112 |
|
| 113 |
# Create two columns for start date and end date input
|
| 114 |
col1, col2 = st.columns(2)
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
| 116 |
with col1:
|
| 117 |
default_date = datetime(2024, 1, 28)
|
| 118 |
start_date = st.date_input("Start Date: ",value=default_date)
|
| 119 |
|
| 120 |
with col2:
|
| 121 |
default_date = datetime(2024, 2, 24)
|
| 122 |
-
end_date = st.date_input("End Date: ",value=default_date)
|
| 123 |
|
| 124 |
# col1, col2 = st.columns(2)
|
| 125 |
# with col1:
|
|
@@ -141,7 +145,26 @@ if auth_status:
|
|
| 141 |
with col1:
|
| 142 |
selected_option = st.selectbox('Select a comparison', options)
|
| 143 |
with col2:
|
| 144 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
# Waterfall chart
|
| 146 |
fig = sf.waterfall(start_date,end_date,selected_option)
|
| 147 |
st.plotly_chart(fig,use_container_width=True)
|
|
@@ -152,6 +175,7 @@ if auth_status:
|
|
| 152 |
|
| 153 |
## Channel Contribution Bar Chart
|
| 154 |
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
|
|
|
|
| 155 |
# Format first three rows in percentage format
|
| 156 |
# styled_df = sf.shares_table_func(shares_df)
|
| 157 |
# # styled_df = styled_df.round(0).astype(int)
|
|
@@ -162,8 +186,8 @@ if auth_status:
|
|
| 162 |
|
| 163 |
# st.table(styled_df)
|
| 164 |
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
|
| 165 |
-
|
| 166 |
-
st.dataframe(sf.eff_table_func(shares_df),use_container_width=True)
|
| 167 |
|
| 168 |
### CPP CHART
|
| 169 |
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
|
|
|
|
| 29 |
load_local_css('styles.css')
|
| 30 |
set_header()
|
| 31 |
|
| 32 |
+
st.title("Model Result Overview")
|
| 33 |
|
| 34 |
def get_random_effects(media_data, panel_col, mdf):
|
| 35 |
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
|
|
|
| 108 |
a=1
|
| 109 |
|
| 110 |
# st.header("")
|
| 111 |
+
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
|
| 112 |
#### Input Select Start and End Date
|
| 113 |
|
| 114 |
# Create two columns for start date and end date input
|
| 115 |
col1, col2 = st.columns(2)
|
| 116 |
+
|
| 117 |
+
# now = datetime.now()
|
| 118 |
+
# us_format = now.strftime("%m/%d/%Y")
|
| 119 |
+
|
| 120 |
with col1:
|
| 121 |
default_date = datetime(2024, 1, 28)
|
| 122 |
start_date = st.date_input("Start Date: ",value=default_date)
|
| 123 |
|
| 124 |
with col2:
|
| 125 |
default_date = datetime(2024, 2, 24)
|
| 126 |
+
end_date = st.date_input("End Date: ",value = default_date)
|
| 127 |
|
| 128 |
# col1, col2 = st.columns(2)
|
| 129 |
# with col1:
|
|
|
|
| 145 |
with col1:
|
| 146 |
selected_option = st.selectbox('Select a comparison', options)
|
| 147 |
with col2:
|
| 148 |
+
st.markdown("""</br>""",unsafe_allow_html=True)
|
| 149 |
+
if selected_option == "Month on Month" :
|
| 150 |
+
|
| 151 |
+
st.markdown(
|
| 152 |
+
f"""
|
| 153 |
+
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
|
| 154 |
+
<strong> Comparision of current month spends to previous month spends</strong>
|
| 155 |
+
</div>
|
| 156 |
+
""",
|
| 157 |
+
unsafe_allow_html=True
|
| 158 |
+
)
|
| 159 |
+
else :
|
| 160 |
+
st.markdown(
|
| 161 |
+
f"""
|
| 162 |
+
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
|
| 163 |
+
<strong> Comparision of current month spends to the same month in previous year</strong>
|
| 164 |
+
</div>
|
| 165 |
+
""",
|
| 166 |
+
unsafe_allow_html=True
|
| 167 |
+
)
|
| 168 |
# Waterfall chart
|
| 169 |
fig = sf.waterfall(start_date,end_date,selected_option)
|
| 170 |
st.plotly_chart(fig,use_container_width=True)
|
|
|
|
| 175 |
|
| 176 |
## Channel Contribution Bar Chart
|
| 177 |
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
|
| 178 |
+
st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True)
|
| 179 |
# Format first three rows in percentage format
|
| 180 |
# styled_df = sf.shares_table_func(shares_df)
|
| 181 |
# # styled_df = styled_df.round(0).astype(int)
|
|
|
|
| 186 |
|
| 187 |
# st.table(styled_df)
|
| 188 |
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
|
| 189 |
+
|
| 190 |
+
st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True)
|
| 191 |
|
| 192 |
### CPP CHART
|
| 193 |
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
|
Streamlit_functions.py
CHANGED
|
@@ -142,7 +142,7 @@ def pie_charts(start_date,end_date):
|
|
| 142 |
# title = "Distribution of Contributions"
|
| 143 |
), 1, 2)
|
| 144 |
fig.update_layout(
|
| 145 |
-
title="Distribution
|
| 146 |
)
|
| 147 |
|
| 148 |
return fig
|
|
@@ -167,7 +167,7 @@ def pie_spend(start_date,end_date):
|
|
| 167 |
|
| 168 |
# Customize the layout
|
| 169 |
fig.update_layout(
|
| 170 |
-
title="Distribution
|
| 171 |
)
|
| 172 |
|
| 173 |
# Show the figure
|
|
@@ -194,7 +194,7 @@ def pie_contributions(start_date,end_date):
|
|
| 194 |
# fig.add_annotation(showarrow=False)
|
| 195 |
# Customize the layout
|
| 196 |
fig.update_layout(
|
| 197 |
-
title="Distribution
|
| 198 |
# margin=dict(t=0, b=0, l=0, r=0)
|
| 199 |
)
|
| 200 |
|
|
@@ -268,8 +268,8 @@ def waterfall(start_date,end_date,btn_chart):
|
|
| 268 |
x=[labels[i]],
|
| 269 |
y=[cumulative[i+1] - cumulative[i]],
|
| 270 |
base=[cumulative[i]],
|
| 271 |
-
text=[f"{abs(values[i])}"],
|
| 272 |
-
textposition='
|
| 273 |
hovertemplate=hover_text,
|
| 274 |
marker=dict(color=color),
|
| 275 |
showlegend=False
|
|
@@ -281,7 +281,7 @@ def waterfall(start_date,end_date,btn_chart):
|
|
| 281 |
# Updating layout for black background and gray gridlines
|
| 282 |
if btn_chart == "Month on Month":
|
| 283 |
fig.update_layout(
|
| 284 |
-
title=f"Change
|
| 285 |
,showlegend=False,
|
| 286 |
# plot_bgcolor='black',
|
| 287 |
# paper_bgcolor='black',
|
|
@@ -295,13 +295,20 @@ def waterfall(start_date,end_date,btn_chart):
|
|
| 295 |
showgrid=True,
|
| 296 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
| 297 |
zeroline=False, # Hiding the y-axis zero line
|
| 298 |
-
range=[18000, max(cumulative)+1000]
|
| 299 |
)
|
| 300 |
-
|
| 301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 302 |
else :
|
| 303 |
fig.update_layout(
|
| 304 |
-
title=f"Change
|
| 305 |
,showlegend=False,
|
| 306 |
# plot_bgcolor='black',
|
| 307 |
# paper_bgcolor='black',
|
|
@@ -315,7 +322,7 @@ def waterfall(start_date,end_date,btn_chart):
|
|
| 315 |
showgrid=True,
|
| 316 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
| 317 |
zeroline=False, # Hiding the y-axis zero line
|
| 318 |
-
range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
| 319 |
)
|
| 320 |
|
| 321 |
)
|
|
@@ -418,13 +425,13 @@ def channel_contribution(start_date,end_date):
|
|
| 418 |
x=channel_df['channels'],
|
| 419 |
y=round(channel_df['contributions']),
|
| 420 |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
| 421 |
-
text=
|
| 422 |
textposition='outside'
|
| 423 |
)])
|
| 424 |
|
| 425 |
# Updating layout for better visualization
|
| 426 |
fig.update_layout(
|
| 427 |
-
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%
|
| 428 |
# plot_bgcolor='black',
|
| 429 |
# paper_bgcolor='black',
|
| 430 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
@@ -442,6 +449,54 @@ def channel_contribution(start_date,end_date):
|
|
| 442 |
)
|
| 443 |
|
| 444 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
def shares_table_func(shares_df):
|
| 446 |
|
| 447 |
# if pd.isnull(start_date) == True :
|
|
@@ -488,7 +543,7 @@ def eff_table_func(shares_df):
|
|
| 488 |
media_df.index = media_df["MEDIA"]
|
| 489 |
media_df.drop(columns = ["MEDIA"],inplace = True)
|
| 490 |
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]:
|
| 491 |
-
media_df[c] = media_df[c].astype(int)
|
| 492 |
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]:
|
| 493 |
media_df[c] = media_df[c].astype(int)
|
| 494 |
media_df[c] = media_df[c].astype(str)+'%'
|
|
@@ -535,7 +590,7 @@ def cpp(start_date,end_date):
|
|
| 535 |
|
| 536 |
# Update layout for better visualization
|
| 537 |
fig.update_layout(
|
| 538 |
-
title=f"CPP
|
| 539 |
,
|
| 540 |
# plot_bgcolor='black',
|
| 541 |
# paper_bgcolor='black',
|
|
@@ -572,8 +627,8 @@ def base_decomp():
|
|
| 572 |
|
| 573 |
# Update layout for better visualization
|
| 574 |
fig.update_layout(
|
| 575 |
-
title=f"Base
|
| 576 |
-
# <br>{cur_data['Date'].min().strftime('%
|
| 577 |
,
|
| 578 |
# plot_bgcolor='black',
|
| 579 |
# paper_bgcolor='black',
|
|
@@ -664,7 +719,7 @@ def media_decomp():
|
|
| 664 |
|
| 665 |
# Updating layout for better visualization
|
| 666 |
fig.update_layout(
|
| 667 |
-
title=f"Media
|
| 668 |
# plot_bgcolor='black',
|
| 669 |
# paper_bgcolor='black',
|
| 670 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
@@ -753,12 +808,14 @@ def elasticity(media_df):
|
|
| 753 |
x=media_df['coeff'],
|
| 754 |
y=media_df['category'],
|
| 755 |
orientation='h', # Setting the orientation to horizontal
|
| 756 |
-
marker_color='rgba(75, 136, 257, 1)'
|
|
|
|
|
|
|
| 757 |
))
|
| 758 |
|
| 759 |
# Updating layout for better visualization
|
| 760 |
fig.update_layout(
|
| 761 |
-
title="Media
|
| 762 |
xaxis=dict(
|
| 763 |
title="Elasticity (coefficient)",
|
| 764 |
showgrid=True,
|
|
@@ -790,7 +847,9 @@ def half_life(media_df):
|
|
| 790 |
x=media_df[media_df['half_life'].isnull()==False]['half_life'],
|
| 791 |
y=media_df[media_df['half_life'].isnull()==False]['category'],
|
| 792 |
orientation='h', # Setting the orientation to horizontal
|
| 793 |
-
marker_color='rgba(75, 136, 257, 1)'
|
|
|
|
|
|
|
| 794 |
))
|
| 795 |
|
| 796 |
# Updating layout for better visualization
|
|
@@ -856,8 +915,15 @@ def model_metrics_table_func():
|
|
| 856 |
calculate_bic(df["Y"], df["Y_hat"])])
|
| 857 |
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"]
|
| 858 |
model_metrics_df = model_metrics_df.transpose()
|
| 859 |
-
model_metrics_df.index = [
|
| 860 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 861 |
|
| 862 |
|
| 863 |
def scenario_spend_forecasting(delta_df,start_date,end_date):
|
|
|
|
| 142 |
# title = "Distribution of Contributions"
|
| 143 |
), 1, 2)
|
| 144 |
fig.update_layout(
|
| 145 |
+
title="Distribution Of Spends And Contributions"
|
| 146 |
)
|
| 147 |
|
| 148 |
return fig
|
|
|
|
| 167 |
|
| 168 |
# Customize the layout
|
| 169 |
fig.update_layout(
|
| 170 |
+
title="Distribution Of Spends"
|
| 171 |
)
|
| 172 |
|
| 173 |
# Show the figure
|
|
|
|
| 194 |
# fig.add_annotation(showarrow=False)
|
| 195 |
# Customize the layout
|
| 196 |
fig.update_layout(
|
| 197 |
+
title="Distribution Of Contributions",
|
| 198 |
# margin=dict(t=0, b=0, l=0, r=0)
|
| 199 |
)
|
| 200 |
|
|
|
|
| 268 |
x=[labels[i]],
|
| 269 |
y=[cumulative[i+1] - cumulative[i]],
|
| 270 |
base=[cumulative[i]],
|
| 271 |
+
text=[f"{abs(values[i]):,}"],
|
| 272 |
+
textposition='auto',
|
| 273 |
hovertemplate=hover_text,
|
| 274 |
marker=dict(color=color),
|
| 275 |
showlegend=False
|
|
|
|
| 281 |
# Updating layout for black background and gray gridlines
|
| 282 |
if btn_chart == "Month on Month":
|
| 283 |
fig.update_layout(
|
| 284 |
+
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} to {end_date_prev.strftime('%m-%d-%Y')} vs. {start_date.strftime('%m-%d-%Y')} to {end_date.strftime('%m-%d-%Y')}"
|
| 285 |
,showlegend=False,
|
| 286 |
# plot_bgcolor='black',
|
| 287 |
# paper_bgcolor='black',
|
|
|
|
| 295 |
showgrid=True,
|
| 296 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
| 297 |
zeroline=False, # Hiding the y-axis zero line
|
| 298 |
+
# range=[18000, max(max(cumulative), max(values)) + 1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
| 299 |
)
|
| 300 |
+
)
|
| 301 |
+
# fig.update_xaxes(
|
| 302 |
+
# tickmode="array",
|
| 303 |
+
# # categoryorder="total ascending",
|
| 304 |
+
# tickvals=[f"{abs(values[i])}"],
|
| 305 |
+
# ticktext=[f"{abs(values[i])}"],
|
| 306 |
+
# ticklabelposition="outside",
|
| 307 |
+
# tickfont=dict(color="white"),
|
| 308 |
+
# )
|
| 309 |
else :
|
| 310 |
fig.update_layout(
|
| 311 |
+
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} to {end_date_prev.strftime('%m-%d-%Y')} vs. {start_date.strftime('%m-%d-%Y')} to {end_date.strftime('%m-%d-%Y')}"
|
| 312 |
,showlegend=False,
|
| 313 |
# plot_bgcolor='black',
|
| 314 |
# paper_bgcolor='black',
|
|
|
|
| 322 |
showgrid=True,
|
| 323 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
| 324 |
zeroline=False, # Hiding the y-axis zero line
|
| 325 |
+
# range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
| 326 |
)
|
| 327 |
|
| 328 |
)
|
|
|
|
| 425 |
x=channel_df['channels'],
|
| 426 |
y=round(channel_df['contributions']),
|
| 427 |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
| 428 |
+
text=(channel_df['contributions']).astype(int).apply(lambda x: f"{x:,}"),
|
| 429 |
textposition='outside'
|
| 430 |
)])
|
| 431 |
|
| 432 |
# Updating layout for better visualization
|
| 433 |
fig.update_layout(
|
| 434 |
+
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
| 435 |
# plot_bgcolor='black',
|
| 436 |
# paper_bgcolor='black',
|
| 437 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
|
|
| 449 |
)
|
| 450 |
|
| 451 |
return fig
|
| 452 |
+
|
| 453 |
+
def chanel_spends(start_date,end_date):
|
| 454 |
+
|
| 455 |
+
# if pd.isnull(start_date) == True :
|
| 456 |
+
# start_date = datetime(2024, 1, 28)
|
| 457 |
+
# if pd.isnull(end_date) == True :
|
| 458 |
+
# end_date = datetime(2024, 2, 24)
|
| 459 |
+
|
| 460 |
+
start_date = pd.to_datetime(start_date)
|
| 461 |
+
end_date = pd.to_datetime(end_date)
|
| 462 |
+
|
| 463 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
| 464 |
+
|
| 465 |
+
channel_df = pd.DataFrame(cur_data[spend_cols].sum()).reset_index()
|
| 466 |
+
channel_df.columns = ["channels","spends"]
|
| 467 |
+
channel_df["channels"] = channels
|
| 468 |
+
|
| 469 |
+
# Creating the bar chart
|
| 470 |
+
fig = go.Figure(data=[go.Bar(
|
| 471 |
+
x=channel_df['channels'],
|
| 472 |
+
y=round(channel_df['spends']),
|
| 473 |
+
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
| 474 |
+
text=channel_df['spends'].apply(numerize),
|
| 475 |
+
# text = (channel_df['spends']).astype(int).apply(lambda x: f"{x:,}"),
|
| 476 |
+
textposition='outside'
|
| 477 |
+
)])
|
| 478 |
+
|
| 479 |
+
# Updating layout for better visualization
|
| 480 |
+
fig.update_layout(
|
| 481 |
+
title=f"Media Spends <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
| 482 |
+
# plot_bgcolor='black',
|
| 483 |
+
# paper_bgcolor='black',
|
| 484 |
+
# font=dict(color='white'), # Changing font color to white for better contrast
|
| 485 |
+
xaxis=dict(
|
| 486 |
+
showgrid=False,
|
| 487 |
+
gridcolor='gray', # Setting x-axis gridline color to gray
|
| 488 |
+
zeroline=False, # Hiding the x-axis zero line
|
| 489 |
+
),
|
| 490 |
+
yaxis=dict(
|
| 491 |
+
title="Spends ($)",
|
| 492 |
+
showgrid=True,
|
| 493 |
+
gridcolor='gray', # Setting y-axis gridline color to gray
|
| 494 |
+
zeroline=False, # Hiding the y-axis zero line
|
| 495 |
+
)
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
return fig
|
| 499 |
+
|
| 500 |
def shares_table_func(shares_df):
|
| 501 |
|
| 502 |
# if pd.isnull(start_date) == True :
|
|
|
|
| 543 |
media_df.index = media_df["MEDIA"]
|
| 544 |
media_df.drop(columns = ["MEDIA"],inplace = True)
|
| 545 |
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]:
|
| 546 |
+
media_df[c] = media_df[c].astype(int)
|
| 547 |
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]:
|
| 548 |
media_df[c] = media_df[c].astype(int)
|
| 549 |
media_df[c] = media_df[c].astype(str)+'%'
|
|
|
|
| 590 |
|
| 591 |
# Update layout for better visualization
|
| 592 |
fig.update_layout(
|
| 593 |
+
title=f"CPP Distribution <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}"
|
| 594 |
,
|
| 595 |
# plot_bgcolor='black',
|
| 596 |
# paper_bgcolor='black',
|
|
|
|
| 627 |
|
| 628 |
# Update layout for better visualization
|
| 629 |
fig.update_layout(
|
| 630 |
+
title=f"Base Decomposition"
|
| 631 |
+
# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}"
|
| 632 |
,
|
| 633 |
# plot_bgcolor='black',
|
| 634 |
# paper_bgcolor='black',
|
|
|
|
| 719 |
|
| 720 |
# Updating layout for better visualization
|
| 721 |
fig.update_layout(
|
| 722 |
+
title=f"Media Decomposition",# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
| 723 |
# plot_bgcolor='black',
|
| 724 |
# paper_bgcolor='black',
|
| 725 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
|
|
| 808 |
x=media_df['coeff'],
|
| 809 |
y=media_df['category'],
|
| 810 |
orientation='h', # Setting the orientation to horizontal
|
| 811 |
+
marker_color='rgba(75, 136, 257, 1)',
|
| 812 |
+
text= media_df['coeff'].round(2),
|
| 813 |
+
textposition="outside"
|
| 814 |
))
|
| 815 |
|
| 816 |
# Updating layout for better visualization
|
| 817 |
fig.update_layout(
|
| 818 |
+
title="Media And Baseline Elasticity",
|
| 819 |
xaxis=dict(
|
| 820 |
title="Elasticity (coefficient)",
|
| 821 |
showgrid=True,
|
|
|
|
| 847 |
x=media_df[media_df['half_life'].isnull()==False]['half_life'],
|
| 848 |
y=media_df[media_df['half_life'].isnull()==False]['category'],
|
| 849 |
orientation='h', # Setting the orientation to horizontal
|
| 850 |
+
marker_color='rgba(75, 136, 257, 1)',
|
| 851 |
+
text= media_df['coeff'].round(2),
|
| 852 |
+
textposition="outside"
|
| 853 |
))
|
| 854 |
|
| 855 |
# Updating layout for better visualization
|
|
|
|
| 915 |
calculate_bic(df["Y"], df["Y_hat"])])
|
| 916 |
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"]
|
| 917 |
model_metrics_df = model_metrics_df.transpose()
|
| 918 |
+
# model_metrics_df.index = model_metrics_df["R-squared"]
|
| 919 |
+
# model_metrics_df = model_metrics_df.drop(columns=["R-squared"])
|
| 920 |
+
model_metrics_df2 = pd.DataFrame(model_metrics_df.values,columns=["R-squared","Adjusted R-squared","MAPE","AIC","BIC"] )
|
| 921 |
+
model_metrics_df2 = model_metrics_df2.round(2)
|
| 922 |
+
model_metrics_df2["AIC"] = model_metrics_df2["AIC"].round(0)
|
| 923 |
+
model_metrics_df2["BIC"] = model_metrics_df2["BIC"].round(0)
|
| 924 |
+
model_metrics_df2.index = [" "]
|
| 925 |
+
# model_metrics_df2 = model_metrics_df2.reset_index(drop = True)
|
| 926 |
+
return model_metrics_df2
|
| 927 |
|
| 928 |
|
| 929 |
def scenario_spend_forecasting(delta_df,start_date,end_date):
|
__pycache__/Streamlit_functions.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
|
|
|
__pycache__/classes.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/classes.cpython-310.pyc and b/__pycache__/classes.cpython-310.pyc differ
|
|
|
__pycache__/response_curves_model_quality.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/response_curves_model_quality.cpython-310.pyc and b/__pycache__/response_curves_model_quality.cpython-310.pyc differ
|
|
|
__pycache__/response_curves_model_quality_base.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/response_curves_model_quality_base.cpython-310.pyc and b/__pycache__/response_curves_model_quality_base.cpython-310.pyc differ
|
|
|
__pycache__/utilities.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/utilities.cpython-310.pyc and b/__pycache__/utilities.cpython-310.pyc differ
|
|
|
__pycache__/utilities_with_panel.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/utilities_with_panel.cpython-310.pyc and b/__pycache__/utilities_with_panel.cpython-310.pyc differ
|
|
|
pages/1_Model_Quality.py
CHANGED
|
@@ -10,7 +10,7 @@ st.set_page_config(
|
|
| 10 |
|
| 11 |
|
| 12 |
st.header("Model Quality")
|
| 13 |
-
st.write("MMM Model Quality")
|
| 14 |
|
| 15 |
st.plotly_chart(sf.mmm_model_quality(),use_container_width=True)
|
| 16 |
|
|
@@ -18,7 +18,7 @@ media_df = sf.media_data()
|
|
| 18 |
# Create two columns for start date and end date input
|
| 19 |
col1, col2 = st.columns(2)
|
| 20 |
|
| 21 |
-
st.
|
| 22 |
|
| 23 |
with col1:
|
| 24 |
st.plotly_chart(sf.elasticity(media_df))
|
|
@@ -48,10 +48,10 @@ options1 = [
|
|
| 48 |
col1, col2 = st.columns(2)
|
| 49 |
# Create a dropdown menu
|
| 50 |
with col1:
|
| 51 |
-
selected_option = st.selectbox('Select
|
| 52 |
-
selected_option2 = st.selectbox('Select
|
| 53 |
# Display the selected option
|
| 54 |
-
|
| 55 |
with col2:
|
| 56 |
st.write("")
|
| 57 |
-
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
st.header("Model Quality")
|
| 13 |
+
# st.write("MMM Model Quality")
|
| 14 |
|
| 15 |
st.plotly_chart(sf.mmm_model_quality(),use_container_width=True)
|
| 16 |
|
|
|
|
| 18 |
# Create two columns for start date and end date input
|
| 19 |
col1, col2 = st.columns(2)
|
| 20 |
|
| 21 |
+
st.dataframe(sf.model_metrics_table_func(),hide_index = True,use_container_width=True)
|
| 22 |
|
| 23 |
with col1:
|
| 24 |
st.plotly_chart(sf.elasticity(media_df))
|
|
|
|
| 48 |
col1, col2 = st.columns(2)
|
| 49 |
# Create a dropdown menu
|
| 50 |
with col1:
|
| 51 |
+
selected_option = st.selectbox('Select A Media Channel:', options)
|
| 52 |
+
selected_option2 = st.selectbox('Select A Chart Type', options1)
|
| 53 |
# Display the selected option
|
| 54 |
+
|
| 55 |
with col2:
|
| 56 |
st.write("")
|
| 57 |
+
st.plotly_chart(rc1.response_curves(selected_option,selected_option2))
|
pages/3_Saved_Scenarios.py
CHANGED
|
@@ -20,6 +20,7 @@ st.set_page_config(layout='wide')
|
|
| 20 |
load_local_css('styles.css')
|
| 21 |
set_header()
|
| 22 |
|
|
|
|
| 23 |
# for k, v in st.session_state.items():
|
| 24 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 25 |
# st.session_state[k] = v
|
|
@@ -87,7 +88,14 @@ def comparison_scenarios_df():
|
|
| 87 |
_df = _df.set_index('Channel')
|
| 88 |
summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True)
|
| 89 |
st.session_state['disable_download_button'] = False
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
|
| 93 |
|
|
@@ -107,7 +115,7 @@ def plot_comparison_chart(df,metric):
|
|
| 107 |
|
| 108 |
# Create the layout
|
| 109 |
layout = go.Layout(
|
| 110 |
-
title='
|
| 111 |
xaxis_title="Channels",
|
| 112 |
yaxis_title=metric,
|
| 113 |
barmode='group'
|
|
@@ -119,12 +127,13 @@ def plot_comparison_chart(df,metric):
|
|
| 119 |
return fig
|
| 120 |
|
| 121 |
def create_comparison_plots():
|
| 122 |
-
comparison_scenarios_df()
|
| 123 |
-
spends_df, prospects_df = comparison_scenarios_df()
|
| 124 |
-
|
| 125 |
st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
|
| 126 |
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
|
| 127 |
-
|
|
|
|
| 128 |
def create_scenario_summary(scenario_dict):
|
| 129 |
summary_rows = []
|
| 130 |
actual_total_spends = scenario_dict.get('actual_total_spends'),
|
|
@@ -137,6 +146,7 @@ def create_scenario_summary(scenario_dict):
|
|
| 137 |
# st.write(actual_total_sales[0])
|
| 138 |
# st.write(modified_total_spends[0])
|
| 139 |
for channel_dict in scenario_dict['channels']:
|
|
|
|
| 140 |
name_mod = channel_name_formating(channel_dict['name'])
|
| 141 |
summary_rows.append([name_mod,
|
| 142 |
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
|
|
@@ -170,35 +180,78 @@ def create_scenario_summary(scenario_dict):
|
|
| 170 |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
|
| 171 |
])
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
|
| 179 |
|
| 180 |
def summary_df_to_worksheet(df, ws):
|
| 181 |
-
heading_fill = PatternFill(fill_type='solid',start_color='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
for j,header in enumerate(df.columns.values):
|
| 183 |
col = j + 1
|
| 184 |
for i in range(1,3):
|
| 185 |
-
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='
|
| 186 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
|
|
|
| 187 |
if col > 1 and (col - 6)%5==0:
|
| 188 |
ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
| 189 |
ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
for i,row in enumerate(df.itertuples()):
|
| 191 |
for j,value in enumerate(row):
|
| 192 |
if j == 0:
|
| 193 |
continue
|
| 194 |
-
elif (j-2)%4 == 0 or (j-3)%4 == 0:
|
| 195 |
-
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
| 197 |
else:
|
| 198 |
ws.cell(row=i+3, column = j, value=value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
from openpyxl.utils import get_column_letter
|
| 201 |
from openpyxl.styles import Font, PatternFill
|
|
|
|
| 202 |
import logging
|
| 203 |
|
| 204 |
def scenario_df_to_worksheet(df, ws):
|
|
@@ -274,8 +327,8 @@ def download_scenarios():
|
|
| 274 |
scenario_df = pd.DataFrame(_spends).T
|
| 275 |
scenario_df.columns = column_names
|
| 276 |
## write to sheet
|
| 277 |
-
ws = wb.create_sheet(scenario_name)
|
| 278 |
-
scenario_df_to_worksheet(scenario_df, ws)
|
| 279 |
summary_rows.append(['Total',
|
| 280 |
scenario_dict.get('modified_total_spends') ,
|
| 281 |
scenario_dict.get('modified_total_sales'),
|
|
@@ -305,8 +358,8 @@ def disable_download_button():
|
|
| 305 |
def transform(x):
|
| 306 |
if x.name == ("",'Channel'):
|
| 307 |
return x
|
| 308 |
-
elif x.name[0] == '
|
| 309 |
-
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=
|
| 310 |
else:
|
| 311 |
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
|
| 312 |
|
|
@@ -376,28 +429,40 @@ if auth_status == True:
|
|
| 376 |
column_1, column_2,column_3 = st.columns((6,1,1))
|
| 377 |
with column_1:
|
| 378 |
st.header(selected_scenario)
|
| 379 |
-
with column_2:
|
| 380 |
-
st.button('Delete scenarios', on_click=delete_scenario)
|
| 381 |
with column_3:
|
| 382 |
-
st.button('
|
|
|
|
|
|
|
| 383 |
|
| 384 |
selected_scenario_details = saved_scenarios[selected_scenario]
|
| 385 |
|
| 386 |
pd.set_option('display.max_colwidth', 100)
|
| 387 |
-
|
| 388 |
-
st.
|
| 389 |
-
|
| 390 |
-
'
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 399 |
|
| 400 |
-
|
| 401 |
st.header("Scenario comparison")
|
| 402 |
if len(scenarios_to_compare)== 0:
|
| 403 |
st.write("")
|
|
|
|
| 20 |
load_local_css('styles.css')
|
| 21 |
set_header()
|
| 22 |
|
| 23 |
+
st.title("Saved Scenarios")
|
| 24 |
# for k, v in st.session_state.items():
|
| 25 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
| 26 |
# st.session_state[k] = v
|
|
|
|
| 88 |
_df = _df.set_index('Channel')
|
| 89 |
summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True)
|
| 90 |
st.session_state['disable_download_button'] = False
|
| 91 |
+
|
| 92 |
+
efficiency_df = pd.DataFrame(index = summary_df_prospect.index)
|
| 93 |
+
|
| 94 |
+
for c in summary_df_spend.columns:
|
| 95 |
+
efficiency_df[c] = (summary_df_prospect[c]/summary_df_prospect[c].sum())/(summary_df_spend[c]/summary_df_spend[c].sum())
|
| 96 |
+
efficiency_df[c] = efficiency_df[c].round(2)
|
| 97 |
+
|
| 98 |
+
return summary_df_spend,summary_df_prospect,efficiency_df
|
| 99 |
|
| 100 |
|
| 101 |
|
|
|
|
| 115 |
|
| 116 |
# Create the layout
|
| 117 |
layout = go.Layout(
|
| 118 |
+
title='Comparing '+ metric,
|
| 119 |
xaxis_title="Channels",
|
| 120 |
yaxis_title=metric,
|
| 121 |
barmode='group'
|
|
|
|
| 127 |
return fig
|
| 128 |
|
| 129 |
def create_comparison_plots():
|
| 130 |
+
# comparison_scenarios_df()
|
| 131 |
+
spends_df, prospects_df, efficiency_df = comparison_scenarios_df()
|
| 132 |
+
# st.dataframe(spends_df)
|
| 133 |
st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
|
| 134 |
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
|
| 135 |
+
st.plotly_chart(plot_comparison_chart(efficiency_df,"Efficiency"),use_container_width=True)
|
| 136 |
+
|
| 137 |
def create_scenario_summary(scenario_dict):
|
| 138 |
summary_rows = []
|
| 139 |
actual_total_spends = scenario_dict.get('actual_total_spends'),
|
|
|
|
| 146 |
# st.write(actual_total_sales[0])
|
| 147 |
# st.write(modified_total_spends[0])
|
| 148 |
for channel_dict in scenario_dict['channels']:
|
| 149 |
+
# st.write(channel_dict['name'])
|
| 150 |
name_mod = channel_name_formating(channel_dict['name'])
|
| 151 |
summary_rows.append([name_mod,
|
| 152 |
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
|
|
|
|
| 180 |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
|
| 181 |
])
|
| 182 |
|
| 183 |
+
adf = pd.DataFrame(summary_rows)
|
| 184 |
+
# st.write(adf.columns)
|
| 185 |
|
| 186 |
+
adf.columns = ["1","2","3","4","5","6","7"]
|
| 187 |
+
adf.index = adf["1"].to_list() #["1","2","3","4","5","6","7","8","9","10","11","12","13","14"]
|
| 188 |
+
adf.drop(columns= ["1"],inplace= True)
|
| 189 |
+
# columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["",""])
|
| 190 |
+
# columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""]))
|
| 191 |
+
columns_index = pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""])
|
| 192 |
+
adf.columns = columns_index
|
| 193 |
+
return adf # pd.DataFrame(summary_rows, columns=columns_index)
|
| 194 |
|
| 195 |
|
| 196 |
|
| 197 |
def summary_df_to_worksheet(df, ws):
|
| 198 |
+
heading_fill = PatternFill(fill_type='solid',start_color='FFFFFFFF',end_color='FFFFFFFF')
|
| 199 |
+
|
| 200 |
+
# Define border style
|
| 201 |
+
border_style = Border(
|
| 202 |
+
left=Side(border_style='thin', color='00000000'),
|
| 203 |
+
right=Side(border_style='thin', color='00000000'),
|
| 204 |
+
top=Side(border_style='thin', color='00000000'),
|
| 205 |
+
bottom=Side(border_style='thin', color='00000000')
|
| 206 |
+
)
|
| 207 |
+
number_format = '0.00'
|
| 208 |
for j,header in enumerate(df.columns.values):
|
| 209 |
col = j + 1
|
| 210 |
for i in range(1,3):
|
| 211 |
+
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
|
| 212 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
| 213 |
+
# ws.cell.border = border_style
|
| 214 |
if col > 1 and (col - 6)%5==0:
|
| 215 |
ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
| 216 |
ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
| 217 |
+
# ws.cell.border = border_style
|
| 218 |
+
# Apply borders to all cells, including empty cells
|
| 219 |
+
for row in ws.iter_rows():
|
| 220 |
+
for cell in row:
|
| 221 |
+
cell.border = border_style
|
| 222 |
+
|
| 223 |
for i,row in enumerate(df.itertuples()):
|
| 224 |
for j,value in enumerate(row):
|
| 225 |
if j == 0:
|
| 226 |
continue
|
| 227 |
+
# elif (j-2)%4 == 0 or (j-3)%4 == 0:
|
| 228 |
+
# ws.cell(row=i+3, column = j, value=value)
|
| 229 |
+
# # cell.border = border_style
|
| 230 |
+
# # .number_format = '$#,##0.0'
|
| 231 |
+
# if isinstance(value, (int, float)):
|
| 232 |
+
# cell.number_format = number_format
|
| 233 |
else:
|
| 234 |
ws.cell(row=i+3, column = j, value=value)
|
| 235 |
+
# cell.border = border_style
|
| 236 |
+
if isinstance(value, (int, float)):
|
| 237 |
+
cell.number_format = '$#,##0.0'
|
| 238 |
+
# cell.number_format = number_format
|
| 239 |
+
# Auto-size columns
|
| 240 |
+
for col in ws.columns:
|
| 241 |
+
max_length = 15
|
| 242 |
+
column = col[0].column_letter
|
| 243 |
+
for cell in col:
|
| 244 |
+
try:
|
| 245 |
+
if len(str(cell.value)) > max_length:
|
| 246 |
+
max_length = len(cell.value)
|
| 247 |
+
except:
|
| 248 |
+
pass
|
| 249 |
+
adjusted_width = (max_length + 2)
|
| 250 |
+
ws.column_dimensions[column].width = adjusted_width
|
| 251 |
|
| 252 |
from openpyxl.utils import get_column_letter
|
| 253 |
from openpyxl.styles import Font, PatternFill
|
| 254 |
+
from openpyxl.styles import PatternFill, Font, Alignment, Border, Side
|
| 255 |
import logging
|
| 256 |
|
| 257 |
def scenario_df_to_worksheet(df, ws):
|
|
|
|
| 327 |
scenario_df = pd.DataFrame(_spends).T
|
| 328 |
scenario_df.columns = column_names
|
| 329 |
## write to sheet
|
| 330 |
+
# ws = wb.create_sheet(scenario_name)
|
| 331 |
+
# scenario_df_to_worksheet(scenario_df, ws)
|
| 332 |
summary_rows.append(['Total',
|
| 333 |
scenario_dict.get('modified_total_spends') ,
|
| 334 |
scenario_dict.get('modified_total_sales'),
|
|
|
|
| 358 |
def transform(x):
|
| 359 |
if x.name == ("",'Channel'):
|
| 360 |
return x
|
| 361 |
+
elif x.name[0] == 'Efficiency' or x.name[0] == 'MROI':
|
| 362 |
+
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=2),n_decimals=2))
|
| 363 |
else:
|
| 364 |
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
|
| 365 |
|
|
|
|
| 429 |
column_1, column_2,column_3 = st.columns((6,1,1))
|
| 430 |
with column_1:
|
| 431 |
st.header(selected_scenario)
|
|
|
|
|
|
|
| 432 |
with column_3:
|
| 433 |
+
st.button('Delete scenarios', on_click=delete_scenario)
|
| 434 |
+
# with column_3:
|
| 435 |
+
# st.button('Load Scenario', on_click=load_scenario)
|
| 436 |
|
| 437 |
selected_scenario_details = saved_scenarios[selected_scenario]
|
| 438 |
|
| 439 |
pd.set_option('display.max_colwidth', 100)
|
| 440 |
+
# st.table(create_scenario_summary(selected_scenario_details))
|
| 441 |
+
# st.table(create_scenario_summary(selected_scenario_details).transform(transform))
|
| 442 |
+
adf = create_scenario_summary(selected_scenario_details).transform(transform)
|
| 443 |
+
# adf1 = adf[('Spends', 'Actual'),
|
| 444 |
+
# ( 'Spends', 'Simulated'),
|
| 445 |
+
# ( 'Prospects','Actual'),
|
| 446 |
+
# ( 'Prospects', 'Simulated')].transform(transform)
|
| 447 |
+
# adf2 = adf[('Efficiency', 'Actual'),
|
| 448 |
+
# ('Efficiency', 'Simulated')].round(2)
|
| 449 |
+
# st.write(adf.columns)
|
| 450 |
+
# adf = adf.set_index([('', 'Channel')])#, inplace=True)
|
| 451 |
+
# st.table(adf)
|
| 452 |
+
st.markdown(adf.style.set_table_styles(
|
| 453 |
+
[
|
| 454 |
+
# {
|
| 455 |
+
# 'selector': 'th',
|
| 456 |
+
# 'props': [('background-color', '#1167bd')]
|
| 457 |
+
# },
|
| 458 |
+
# {
|
| 459 |
+
# 'selector' : 'tr:nth-child(even)',
|
| 460 |
+
# 'props' : [('background-color', '#11B6BD')]
|
| 461 |
+
# }
|
| 462 |
+
]).to_html(),unsafe_allow_html=True)
|
| 463 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
| 464 |
|
| 465 |
+
with st.expander('Scenario comparison'):
|
| 466 |
st.header("Scenario comparison")
|
| 467 |
if len(scenarios_to_compare)== 0:
|
| 468 |
st.write("")
|
response_curves_model_quality_base.py
CHANGED
|
@@ -220,6 +220,7 @@ def response_curves(channel,chart_typ):
|
|
| 220 |
|
| 221 |
# Update layout with titles
|
| 222 |
fig.update_layout(
|
|
|
|
| 223 |
title=channel+' Response Curve',
|
| 224 |
xaxis_title='Weekly Spends',
|
| 225 |
yaxis_title='Prospects'
|
|
|
|
| 220 |
|
| 221 |
# Update layout with titles
|
| 222 |
fig.update_layout(
|
| 223 |
+
width=700, height=500,
|
| 224 |
title=channel+' Response Curve',
|
| 225 |
xaxis_title='Weekly Spends',
|
| 226 |
yaxis_title='Prospects'
|
summary_df.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1822
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7eec7e117e96a7d10019a7e5cc889c769bdc4ae798cb0271c9870ee71e805b95
|
| 3 |
size 1822
|
utilities.py
CHANGED
|
@@ -957,7 +957,23 @@ def channel_name_formating(channel_name):
|
|
| 957 |
name_mod = name_mod.replace("Imp", "Spend")
|
| 958 |
elif name_mod.lower().endswith(" clicks"):
|
| 959 |
name_mod = name_mod.replace("Clicks", "Spend")
|
| 960 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 961 |
|
| 962 |
|
| 963 |
def send_email(email, message):
|
|
|
|
| 957 |
name_mod = name_mod.replace("Imp", "Spend")
|
| 958 |
elif name_mod.lower().endswith(" clicks"):
|
| 959 |
name_mod = name_mod.replace("Clicks", "Spend")
|
| 960 |
+
# st.write(channel_name)
|
| 961 |
+
key_dict = my_dict = {
|
| 962 |
+
"DisplayProspecting" :"Display Prospecting",
|
| 963 |
+
"CableTV" :"Cable TV",
|
| 964 |
+
"SocialProspecting": "Social Prospecting",
|
| 965 |
+
"Connected&OTTTV" :"Connected & OTTTV",
|
| 966 |
+
"SocialRetargeting" : "Social Retargeting",
|
| 967 |
+
"DigitalPartners" :"Digital Partners",
|
| 968 |
+
"Audio" :"Audio",
|
| 969 |
+
"BroadcastTV": "Broadcast TV",
|
| 970 |
+
"SearchNon-brand": "Search Non-brand",
|
| 971 |
+
"Email" :"Email" ,
|
| 972 |
+
"SearchBrand": "Search Brand",
|
| 973 |
+
"DisplayRetargeting" : "Display Retargeting" ,
|
| 974 |
+
"\xa0Video":"Video"
|
| 975 |
+
}
|
| 976 |
+
return key_dict[channel_name]
|
| 977 |
|
| 978 |
|
| 979 |
def send_email(email, message):
|