Spaces:
Sleeping
Sleeping
Pragya Jatav
commited on
Commit
·
f4e26b8
1
Parent(s):
734939d
aesthetic changes 1
Browse files- Model_Result_Overview.py +30 -6
- Streamlit_functions.py +89 -23
- __pycache__/Streamlit_functions.cpython-310.pyc +0 -0
- __pycache__/classes.cpython-310.pyc +0 -0
- __pycache__/response_curves_model_quality.cpython-310.pyc +0 -0
- __pycache__/response_curves_model_quality_base.cpython-310.pyc +0 -0
- __pycache__/utilities.cpython-310.pyc +0 -0
- __pycache__/utilities_with_panel.cpython-310.pyc +0 -0
- pages/1_Model_Quality.py +6 -6
- pages/3_Saved_Scenarios.py +98 -33
- response_curves_model_quality_base.py +1 -0
- summary_df.pkl +1 -1
- utilities.py +17 -1
Model_Result_Overview.py
CHANGED
@@ -29,6 +29,7 @@ st.set_page_config(layout='wide')
|
|
29 |
load_local_css('styles.css')
|
30 |
set_header()
|
31 |
|
|
|
32 |
|
33 |
def get_random_effects(media_data, panel_col, mdf):
|
34 |
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
@@ -107,19 +108,22 @@ if auth_status:
|
|
107 |
a=1
|
108 |
|
109 |
# st.header("")
|
110 |
-
st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
|
111 |
#### Input Select Start and End Date
|
112 |
|
113 |
# Create two columns for start date and end date input
|
114 |
col1, col2 = st.columns(2)
|
115 |
-
|
|
|
|
|
|
|
116 |
with col1:
|
117 |
default_date = datetime(2024, 1, 28)
|
118 |
start_date = st.date_input("Start Date: ",value=default_date)
|
119 |
|
120 |
with col2:
|
121 |
default_date = datetime(2024, 2, 24)
|
122 |
-
end_date = st.date_input("End Date: ",value=default_date)
|
123 |
|
124 |
# col1, col2 = st.columns(2)
|
125 |
# with col1:
|
@@ -141,7 +145,26 @@ if auth_status:
|
|
141 |
with col1:
|
142 |
selected_option = st.selectbox('Select a comparison', options)
|
143 |
with col2:
|
144 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Waterfall chart
|
146 |
fig = sf.waterfall(start_date,end_date,selected_option)
|
147 |
st.plotly_chart(fig,use_container_width=True)
|
@@ -152,6 +175,7 @@ if auth_status:
|
|
152 |
|
153 |
## Channel Contribution Bar Chart
|
154 |
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
|
|
|
155 |
# Format first three rows in percentage format
|
156 |
# styled_df = sf.shares_table_func(shares_df)
|
157 |
# # styled_df = styled_df.round(0).astype(int)
|
@@ -162,8 +186,8 @@ if auth_status:
|
|
162 |
|
163 |
# st.table(styled_df)
|
164 |
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
|
165 |
-
|
166 |
-
st.dataframe(sf.eff_table_func(shares_df),use_container_width=True)
|
167 |
|
168 |
### CPP CHART
|
169 |
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
|
|
|
29 |
load_local_css('styles.css')
|
30 |
set_header()
|
31 |
|
32 |
+
st.title("Model Result Overview")
|
33 |
|
34 |
def get_random_effects(media_data, panel_col, mdf):
|
35 |
random_eff_df = pd.DataFrame(columns=[panel_col, "random_effect"])
|
|
|
108 |
a=1
|
109 |
|
110 |
# st.header("")
|
111 |
+
# st.markdown("<h5 style='font-weight: normal;'>MMM Readout for Selected Period</h5>", unsafe_allow_html=True)
|
112 |
#### Input Select Start and End Date
|
113 |
|
114 |
# Create two columns for start date and end date input
|
115 |
col1, col2 = st.columns(2)
|
116 |
+
|
117 |
+
# now = datetime.now()
|
118 |
+
# us_format = now.strftime("%m/%d/%Y")
|
119 |
+
|
120 |
with col1:
|
121 |
default_date = datetime(2024, 1, 28)
|
122 |
start_date = st.date_input("Start Date: ",value=default_date)
|
123 |
|
124 |
with col2:
|
125 |
default_date = datetime(2024, 2, 24)
|
126 |
+
end_date = st.date_input("End Date: ",value = default_date)
|
127 |
|
128 |
# col1, col2 = st.columns(2)
|
129 |
# with col1:
|
|
|
145 |
with col1:
|
146 |
selected_option = st.selectbox('Select a comparison', options)
|
147 |
with col2:
|
148 |
+
st.markdown("""</br>""",unsafe_allow_html=True)
|
149 |
+
if selected_option == "Month on Month" :
|
150 |
+
|
151 |
+
st.markdown(
|
152 |
+
f"""
|
153 |
+
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
|
154 |
+
<strong> Comparision of current month spends to previous month spends</strong>
|
155 |
+
</div>
|
156 |
+
""",
|
157 |
+
unsafe_allow_html=True
|
158 |
+
)
|
159 |
+
else :
|
160 |
+
st.markdown(
|
161 |
+
f"""
|
162 |
+
<div style="padding: 5px; border-radius: 5px; background-color: #FFFFE0; width: fit-content; display: inline-block;">
|
163 |
+
<strong> Comparision of current month spends to the same month in previous year</strong>
|
164 |
+
</div>
|
165 |
+
""",
|
166 |
+
unsafe_allow_html=True
|
167 |
+
)
|
168 |
# Waterfall chart
|
169 |
fig = sf.waterfall(start_date,end_date,selected_option)
|
170 |
st.plotly_chart(fig,use_container_width=True)
|
|
|
175 |
|
176 |
## Channel Contribution Bar Chart
|
177 |
st.plotly_chart(sf.channel_contribution(start_date,end_date),use_container_width=True)
|
178 |
+
st.plotly_chart(sf.chanel_spends(start_date,end_date),use_container_width=True)
|
179 |
# Format first three rows in percentage format
|
180 |
# styled_df = sf.shares_table_func(shares_df)
|
181 |
# # styled_df = styled_df.round(0).astype(int)
|
|
|
186 |
|
187 |
# st.table(styled_df)
|
188 |
st.dataframe(sf.shares_table_func(shares_df),use_container_width=True)
|
189 |
+
|
190 |
+
st.dataframe(sf.eff_table_func(shares_df).style.format({"TOTAL SPEND": "{:,.0f}", "TOTAL SUPPORT": "{:,.0f}", "TOTAL CONTRIBUTION": "{:,.0f}"}),use_container_width=True)
|
191 |
|
192 |
### CPP CHART
|
193 |
st.plotly_chart(sf.cpp(start_date,end_date),use_container_width=True)
|
Streamlit_functions.py
CHANGED
@@ -142,7 +142,7 @@ def pie_charts(start_date,end_date):
|
|
142 |
# title = "Distribution of Contributions"
|
143 |
), 1, 2)
|
144 |
fig.update_layout(
|
145 |
-
title="Distribution
|
146 |
)
|
147 |
|
148 |
return fig
|
@@ -167,7 +167,7 @@ def pie_spend(start_date,end_date):
|
|
167 |
|
168 |
# Customize the layout
|
169 |
fig.update_layout(
|
170 |
-
title="Distribution
|
171 |
)
|
172 |
|
173 |
# Show the figure
|
@@ -194,7 +194,7 @@ def pie_contributions(start_date,end_date):
|
|
194 |
# fig.add_annotation(showarrow=False)
|
195 |
# Customize the layout
|
196 |
fig.update_layout(
|
197 |
-
title="Distribution
|
198 |
# margin=dict(t=0, b=0, l=0, r=0)
|
199 |
)
|
200 |
|
@@ -268,8 +268,8 @@ def waterfall(start_date,end_date,btn_chart):
|
|
268 |
x=[labels[i]],
|
269 |
y=[cumulative[i+1] - cumulative[i]],
|
270 |
base=[cumulative[i]],
|
271 |
-
text=[f"{abs(values[i])}"],
|
272 |
-
textposition='
|
273 |
hovertemplate=hover_text,
|
274 |
marker=dict(color=color),
|
275 |
showlegend=False
|
@@ -281,7 +281,7 @@ def waterfall(start_date,end_date,btn_chart):
|
|
281 |
# Updating layout for black background and gray gridlines
|
282 |
if btn_chart == "Month on Month":
|
283 |
fig.update_layout(
|
284 |
-
title=f"Change
|
285 |
,showlegend=False,
|
286 |
# plot_bgcolor='black',
|
287 |
# paper_bgcolor='black',
|
@@ -295,13 +295,20 @@ def waterfall(start_date,end_date,btn_chart):
|
|
295 |
showgrid=True,
|
296 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
297 |
zeroline=False, # Hiding the y-axis zero line
|
298 |
-
range=[18000, max(cumulative)+1000]
|
299 |
)
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
else :
|
303 |
fig.update_layout(
|
304 |
-
title=f"Change
|
305 |
,showlegend=False,
|
306 |
# plot_bgcolor='black',
|
307 |
# paper_bgcolor='black',
|
@@ -315,7 +322,7 @@ def waterfall(start_date,end_date,btn_chart):
|
|
315 |
showgrid=True,
|
316 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
317 |
zeroline=False, # Hiding the y-axis zero line
|
318 |
-
range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
319 |
)
|
320 |
|
321 |
)
|
@@ -418,13 +425,13 @@ def channel_contribution(start_date,end_date):
|
|
418 |
x=channel_df['channels'],
|
419 |
y=round(channel_df['contributions']),
|
420 |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
421 |
-
text=
|
422 |
textposition='outside'
|
423 |
)])
|
424 |
|
425 |
# Updating layout for better visualization
|
426 |
fig.update_layout(
|
427 |
-
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%
|
428 |
# plot_bgcolor='black',
|
429 |
# paper_bgcolor='black',
|
430 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
@@ -442,6 +449,54 @@ def channel_contribution(start_date,end_date):
|
|
442 |
)
|
443 |
|
444 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
445 |
def shares_table_func(shares_df):
|
446 |
|
447 |
# if pd.isnull(start_date) == True :
|
@@ -488,7 +543,7 @@ def eff_table_func(shares_df):
|
|
488 |
media_df.index = media_df["MEDIA"]
|
489 |
media_df.drop(columns = ["MEDIA"],inplace = True)
|
490 |
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]:
|
491 |
-
media_df[c] = media_df[c].astype(int)
|
492 |
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]:
|
493 |
media_df[c] = media_df[c].astype(int)
|
494 |
media_df[c] = media_df[c].astype(str)+'%'
|
@@ -535,7 +590,7 @@ def cpp(start_date,end_date):
|
|
535 |
|
536 |
# Update layout for better visualization
|
537 |
fig.update_layout(
|
538 |
-
title=f"CPP
|
539 |
,
|
540 |
# plot_bgcolor='black',
|
541 |
# paper_bgcolor='black',
|
@@ -572,8 +627,8 @@ def base_decomp():
|
|
572 |
|
573 |
# Update layout for better visualization
|
574 |
fig.update_layout(
|
575 |
-
title=f"Base
|
576 |
-
# <br>{cur_data['Date'].min().strftime('%
|
577 |
,
|
578 |
# plot_bgcolor='black',
|
579 |
# paper_bgcolor='black',
|
@@ -664,7 +719,7 @@ def media_decomp():
|
|
664 |
|
665 |
# Updating layout for better visualization
|
666 |
fig.update_layout(
|
667 |
-
title=f"Media
|
668 |
# plot_bgcolor='black',
|
669 |
# paper_bgcolor='black',
|
670 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
@@ -753,12 +808,14 @@ def elasticity(media_df):
|
|
753 |
x=media_df['coeff'],
|
754 |
y=media_df['category'],
|
755 |
orientation='h', # Setting the orientation to horizontal
|
756 |
-
marker_color='rgba(75, 136, 257, 1)'
|
|
|
|
|
757 |
))
|
758 |
|
759 |
# Updating layout for better visualization
|
760 |
fig.update_layout(
|
761 |
-
title="Media
|
762 |
xaxis=dict(
|
763 |
title="Elasticity (coefficient)",
|
764 |
showgrid=True,
|
@@ -790,7 +847,9 @@ def half_life(media_df):
|
|
790 |
x=media_df[media_df['half_life'].isnull()==False]['half_life'],
|
791 |
y=media_df[media_df['half_life'].isnull()==False]['category'],
|
792 |
orientation='h', # Setting the orientation to horizontal
|
793 |
-
marker_color='rgba(75, 136, 257, 1)'
|
|
|
|
|
794 |
))
|
795 |
|
796 |
# Updating layout for better visualization
|
@@ -856,8 +915,15 @@ def model_metrics_table_func():
|
|
856 |
calculate_bic(df["Y"], df["Y_hat"])])
|
857 |
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"]
|
858 |
model_metrics_df = model_metrics_df.transpose()
|
859 |
-
model_metrics_df.index = [
|
860 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
861 |
|
862 |
|
863 |
def scenario_spend_forecasting(delta_df,start_date,end_date):
|
|
|
142 |
# title = "Distribution of Contributions"
|
143 |
), 1, 2)
|
144 |
fig.update_layout(
|
145 |
+
title="Distribution Of Spends And Contributions"
|
146 |
)
|
147 |
|
148 |
return fig
|
|
|
167 |
|
168 |
# Customize the layout
|
169 |
fig.update_layout(
|
170 |
+
title="Distribution Of Spends"
|
171 |
)
|
172 |
|
173 |
# Show the figure
|
|
|
194 |
# fig.add_annotation(showarrow=False)
|
195 |
# Customize the layout
|
196 |
fig.update_layout(
|
197 |
+
title="Distribution Of Contributions",
|
198 |
# margin=dict(t=0, b=0, l=0, r=0)
|
199 |
)
|
200 |
|
|
|
268 |
x=[labels[i]],
|
269 |
y=[cumulative[i+1] - cumulative[i]],
|
270 |
base=[cumulative[i]],
|
271 |
+
text=[f"{abs(values[i]):,}"],
|
272 |
+
textposition='auto',
|
273 |
hovertemplate=hover_text,
|
274 |
marker=dict(color=color),
|
275 |
showlegend=False
|
|
|
281 |
# Updating layout for black background and gray gridlines
|
282 |
if btn_chart == "Month on Month":
|
283 |
fig.update_layout(
|
284 |
+
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} to {end_date_prev.strftime('%m-%d-%Y')} vs. {start_date.strftime('%m-%d-%Y')} to {end_date.strftime('%m-%d-%Y')}"
|
285 |
,showlegend=False,
|
286 |
# plot_bgcolor='black',
|
287 |
# paper_bgcolor='black',
|
|
|
295 |
showgrid=True,
|
296 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
297 |
zeroline=False, # Hiding the y-axis zero line
|
298 |
+
# range=[18000, max(max(cumulative), max(values)) + 1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
299 |
)
|
300 |
+
)
|
301 |
+
# fig.update_xaxes(
|
302 |
+
# tickmode="array",
|
303 |
+
# # categoryorder="total ascending",
|
304 |
+
# tickvals=[f"{abs(values[i])}"],
|
305 |
+
# ticktext=[f"{abs(values[i])}"],
|
306 |
+
# ticklabelposition="outside",
|
307 |
+
# tickfont=dict(color="white"),
|
308 |
+
# )
|
309 |
else :
|
310 |
fig.update_layout(
|
311 |
+
title=f"Change In MMM Estimated Prospect Contribution <br>{start_date_prev.strftime('%m-%d-%Y')} to {end_date_prev.strftime('%m-%d-%Y')} vs. {start_date.strftime('%m-%d-%Y')} to {end_date.strftime('%m-%d-%Y')}"
|
312 |
,showlegend=False,
|
313 |
# plot_bgcolor='black',
|
314 |
# paper_bgcolor='black',
|
|
|
322 |
showgrid=True,
|
323 |
gridcolor='gray', # Setting y-axis gridline color to gray
|
324 |
zeroline=False, # Hiding the y-axis zero line
|
325 |
+
# range=[10000, max(cumulative)+1000] # Setting the y-axis range from 19k to slightly above the maximum value
|
326 |
)
|
327 |
|
328 |
)
|
|
|
425 |
x=channel_df['channels'],
|
426 |
y=round(channel_df['contributions']),
|
427 |
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
428 |
+
text=(channel_df['contributions']).astype(int).apply(lambda x: f"{x:,}"),
|
429 |
textposition='outside'
|
430 |
)])
|
431 |
|
432 |
# Updating layout for better visualization
|
433 |
fig.update_layout(
|
434 |
+
title=f"Media Contribution <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
435 |
# plot_bgcolor='black',
|
436 |
# paper_bgcolor='black',
|
437 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
|
449 |
)
|
450 |
|
451 |
return fig
|
452 |
+
|
453 |
+
def chanel_spends(start_date,end_date):
|
454 |
+
|
455 |
+
# if pd.isnull(start_date) == True :
|
456 |
+
# start_date = datetime(2024, 1, 28)
|
457 |
+
# if pd.isnull(end_date) == True :
|
458 |
+
# end_date = datetime(2024, 2, 24)
|
459 |
+
|
460 |
+
start_date = pd.to_datetime(start_date)
|
461 |
+
end_date = pd.to_datetime(end_date)
|
462 |
+
|
463 |
+
cur_data = df[(df['Date'] >= start_date) & (df['Date'] <= end_date)]
|
464 |
+
|
465 |
+
channel_df = pd.DataFrame(cur_data[spend_cols].sum()).reset_index()
|
466 |
+
channel_df.columns = ["channels","spends"]
|
467 |
+
channel_df["channels"] = channels
|
468 |
+
|
469 |
+
# Creating the bar chart
|
470 |
+
fig = go.Figure(data=[go.Bar(
|
471 |
+
x=channel_df['channels'],
|
472 |
+
y=round(channel_df['spends']),
|
473 |
+
marker=dict(color='rgb(74, 136, 217)'), # Blue color for all bars
|
474 |
+
text=channel_df['spends'].apply(numerize),
|
475 |
+
# text = (channel_df['spends']).astype(int).apply(lambda x: f"{x:,}"),
|
476 |
+
textposition='outside'
|
477 |
+
)])
|
478 |
+
|
479 |
+
# Updating layout for better visualization
|
480 |
+
fig.update_layout(
|
481 |
+
title=f"Media Spends <br> {cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
482 |
+
# plot_bgcolor='black',
|
483 |
+
# paper_bgcolor='black',
|
484 |
+
# font=dict(color='white'), # Changing font color to white for better contrast
|
485 |
+
xaxis=dict(
|
486 |
+
showgrid=False,
|
487 |
+
gridcolor='gray', # Setting x-axis gridline color to gray
|
488 |
+
zeroline=False, # Hiding the x-axis zero line
|
489 |
+
),
|
490 |
+
yaxis=dict(
|
491 |
+
title="Spends ($)",
|
492 |
+
showgrid=True,
|
493 |
+
gridcolor='gray', # Setting y-axis gridline color to gray
|
494 |
+
zeroline=False, # Hiding the y-axis zero line
|
495 |
+
)
|
496 |
+
)
|
497 |
+
|
498 |
+
return fig
|
499 |
+
|
500 |
def shares_table_func(shares_df):
|
501 |
|
502 |
# if pd.isnull(start_date) == True :
|
|
|
543 |
media_df.index = media_df["MEDIA"]
|
544 |
media_df.drop(columns = ["MEDIA"],inplace = True)
|
545 |
for c in ["TOTAL SPEND","TOTAL SUPPORT","TOTAL CONTRIBUTION"]:
|
546 |
+
media_df[c] = media_df[c].astype(int)
|
547 |
for c in ["SPEND SHARE","SUPPORT SHARE","CONTRIBUTION SHARE"]:
|
548 |
media_df[c] = media_df[c].astype(int)
|
549 |
media_df[c] = media_df[c].astype(str)+'%'
|
|
|
590 |
|
591 |
# Update layout for better visualization
|
592 |
fig.update_layout(
|
593 |
+
title=f"CPP Distribution <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}"
|
594 |
,
|
595 |
# plot_bgcolor='black',
|
596 |
# paper_bgcolor='black',
|
|
|
627 |
|
628 |
# Update layout for better visualization
|
629 |
fig.update_layout(
|
630 |
+
title=f"Base Decomposition"
|
631 |
+
# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}"
|
632 |
,
|
633 |
# plot_bgcolor='black',
|
634 |
# paper_bgcolor='black',
|
|
|
719 |
|
720 |
# Updating layout for better visualization
|
721 |
fig.update_layout(
|
722 |
+
title=f"Media Decomposition",# <br>{cur_data['Date'].min().strftime('%m-%d-%Y')} to {cur_data['Date'].max().strftime('%m-%d-%Y')}",
|
723 |
# plot_bgcolor='black',
|
724 |
# paper_bgcolor='black',
|
725 |
# font=dict(color='white'), # Changing font color to white for better contrast
|
|
|
808 |
x=media_df['coeff'],
|
809 |
y=media_df['category'],
|
810 |
orientation='h', # Setting the orientation to horizontal
|
811 |
+
marker_color='rgba(75, 136, 257, 1)',
|
812 |
+
text= media_df['coeff'].round(2),
|
813 |
+
textposition="outside"
|
814 |
))
|
815 |
|
816 |
# Updating layout for better visualization
|
817 |
fig.update_layout(
|
818 |
+
title="Media And Baseline Elasticity",
|
819 |
xaxis=dict(
|
820 |
title="Elasticity (coefficient)",
|
821 |
showgrid=True,
|
|
|
847 |
x=media_df[media_df['half_life'].isnull()==False]['half_life'],
|
848 |
y=media_df[media_df['half_life'].isnull()==False]['category'],
|
849 |
orientation='h', # Setting the orientation to horizontal
|
850 |
+
marker_color='rgba(75, 136, 257, 1)',
|
851 |
+
text= media_df['coeff'].round(2),
|
852 |
+
textposition="outside"
|
853 |
))
|
854 |
|
855 |
# Updating layout for better visualization
|
|
|
915 |
calculate_bic(df["Y"], df["Y_hat"])])
|
916 |
model_metrics_df.index = ["R-squared","Adjusted R-squared","MAPE","AIC","BIC"]
|
917 |
model_metrics_df = model_metrics_df.transpose()
|
918 |
+
# model_metrics_df.index = model_metrics_df["R-squared"]
|
919 |
+
# model_metrics_df = model_metrics_df.drop(columns=["R-squared"])
|
920 |
+
model_metrics_df2 = pd.DataFrame(model_metrics_df.values,columns=["R-squared","Adjusted R-squared","MAPE","AIC","BIC"] )
|
921 |
+
model_metrics_df2 = model_metrics_df2.round(2)
|
922 |
+
model_metrics_df2["AIC"] = model_metrics_df2["AIC"].round(0)
|
923 |
+
model_metrics_df2["BIC"] = model_metrics_df2["BIC"].round(0)
|
924 |
+
model_metrics_df2.index = [" "]
|
925 |
+
# model_metrics_df2 = model_metrics_df2.reset_index(drop = True)
|
926 |
+
return model_metrics_df2
|
927 |
|
928 |
|
929 |
def scenario_spend_forecasting(delta_df,start_date,end_date):
|
__pycache__/Streamlit_functions.cpython-310.pyc
CHANGED
Binary files a/__pycache__/Streamlit_functions.cpython-310.pyc and b/__pycache__/Streamlit_functions.cpython-310.pyc differ
|
|
__pycache__/classes.cpython-310.pyc
CHANGED
Binary files a/__pycache__/classes.cpython-310.pyc and b/__pycache__/classes.cpython-310.pyc differ
|
|
__pycache__/response_curves_model_quality.cpython-310.pyc
CHANGED
Binary files a/__pycache__/response_curves_model_quality.cpython-310.pyc and b/__pycache__/response_curves_model_quality.cpython-310.pyc differ
|
|
__pycache__/response_curves_model_quality_base.cpython-310.pyc
CHANGED
Binary files a/__pycache__/response_curves_model_quality_base.cpython-310.pyc and b/__pycache__/response_curves_model_quality_base.cpython-310.pyc differ
|
|
__pycache__/utilities.cpython-310.pyc
CHANGED
Binary files a/__pycache__/utilities.cpython-310.pyc and b/__pycache__/utilities.cpython-310.pyc differ
|
|
__pycache__/utilities_with_panel.cpython-310.pyc
CHANGED
Binary files a/__pycache__/utilities_with_panel.cpython-310.pyc and b/__pycache__/utilities_with_panel.cpython-310.pyc differ
|
|
pages/1_Model_Quality.py
CHANGED
@@ -10,7 +10,7 @@ st.set_page_config(
|
|
10 |
|
11 |
|
12 |
st.header("Model Quality")
|
13 |
-
st.write("MMM Model Quality")
|
14 |
|
15 |
st.plotly_chart(sf.mmm_model_quality(),use_container_width=True)
|
16 |
|
@@ -18,7 +18,7 @@ media_df = sf.media_data()
|
|
18 |
# Create two columns for start date and end date input
|
19 |
col1, col2 = st.columns(2)
|
20 |
|
21 |
-
st.
|
22 |
|
23 |
with col1:
|
24 |
st.plotly_chart(sf.elasticity(media_df))
|
@@ -48,10 +48,10 @@ options1 = [
|
|
48 |
col1, col2 = st.columns(2)
|
49 |
# Create a dropdown menu
|
50 |
with col1:
|
51 |
-
selected_option = st.selectbox('Select
|
52 |
-
selected_option2 = st.selectbox('Select
|
53 |
# Display the selected option
|
54 |
-
|
55 |
with col2:
|
56 |
st.write("")
|
57 |
-
|
|
|
10 |
|
11 |
|
12 |
st.header("Model Quality")
|
13 |
+
# st.write("MMM Model Quality")
|
14 |
|
15 |
st.plotly_chart(sf.mmm_model_quality(),use_container_width=True)
|
16 |
|
|
|
18 |
# Create two columns for start date and end date input
|
19 |
col1, col2 = st.columns(2)
|
20 |
|
21 |
+
st.dataframe(sf.model_metrics_table_func(),hide_index = True,use_container_width=True)
|
22 |
|
23 |
with col1:
|
24 |
st.plotly_chart(sf.elasticity(media_df))
|
|
|
48 |
col1, col2 = st.columns(2)
|
49 |
# Create a dropdown menu
|
50 |
with col1:
|
51 |
+
selected_option = st.selectbox('Select A Media Channel:', options)
|
52 |
+
selected_option2 = st.selectbox('Select A Chart Type', options1)
|
53 |
# Display the selected option
|
54 |
+
|
55 |
with col2:
|
56 |
st.write("")
|
57 |
+
st.plotly_chart(rc1.response_curves(selected_option,selected_option2))
|
pages/3_Saved_Scenarios.py
CHANGED
@@ -20,6 +20,7 @@ st.set_page_config(layout='wide')
|
|
20 |
load_local_css('styles.css')
|
21 |
set_header()
|
22 |
|
|
|
23 |
# for k, v in st.session_state.items():
|
24 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
25 |
# st.session_state[k] = v
|
@@ -87,7 +88,14 @@ def comparison_scenarios_df():
|
|
87 |
_df = _df.set_index('Channel')
|
88 |
summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True)
|
89 |
st.session_state['disable_download_button'] = False
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
|
@@ -107,7 +115,7 @@ def plot_comparison_chart(df,metric):
|
|
107 |
|
108 |
# Create the layout
|
109 |
layout = go.Layout(
|
110 |
-
title='
|
111 |
xaxis_title="Channels",
|
112 |
yaxis_title=metric,
|
113 |
barmode='group'
|
@@ -119,12 +127,13 @@ def plot_comparison_chart(df,metric):
|
|
119 |
return fig
|
120 |
|
121 |
def create_comparison_plots():
|
122 |
-
comparison_scenarios_df()
|
123 |
-
spends_df, prospects_df = comparison_scenarios_df()
|
124 |
-
|
125 |
st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
|
126 |
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
|
127 |
-
|
|
|
128 |
def create_scenario_summary(scenario_dict):
|
129 |
summary_rows = []
|
130 |
actual_total_spends = scenario_dict.get('actual_total_spends'),
|
@@ -137,6 +146,7 @@ def create_scenario_summary(scenario_dict):
|
|
137 |
# st.write(actual_total_sales[0])
|
138 |
# st.write(modified_total_spends[0])
|
139 |
for channel_dict in scenario_dict['channels']:
|
|
|
140 |
name_mod = channel_name_formating(channel_dict['name'])
|
141 |
summary_rows.append([name_mod,
|
142 |
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
|
@@ -170,35 +180,78 @@ def create_scenario_summary(scenario_dict):
|
|
170 |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
|
171 |
])
|
172 |
|
173 |
-
|
174 |
-
|
175 |
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
|
179 |
|
180 |
def summary_df_to_worksheet(df, ws):
|
181 |
-
heading_fill = PatternFill(fill_type='solid',start_color='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
for j,header in enumerate(df.columns.values):
|
183 |
col = j + 1
|
184 |
for i in range(1,3):
|
185 |
-
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='
|
186 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
|
|
187 |
if col > 1 and (col - 6)%5==0:
|
188 |
ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
189 |
ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
for i,row in enumerate(df.itertuples()):
|
191 |
for j,value in enumerate(row):
|
192 |
if j == 0:
|
193 |
continue
|
194 |
-
elif (j-2)%4 == 0 or (j-3)%4 == 0:
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
197 |
else:
|
198 |
ws.cell(row=i+3, column = j, value=value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
from openpyxl.utils import get_column_letter
|
201 |
from openpyxl.styles import Font, PatternFill
|
|
|
202 |
import logging
|
203 |
|
204 |
def scenario_df_to_worksheet(df, ws):
|
@@ -274,8 +327,8 @@ def download_scenarios():
|
|
274 |
scenario_df = pd.DataFrame(_spends).T
|
275 |
scenario_df.columns = column_names
|
276 |
## write to sheet
|
277 |
-
ws = wb.create_sheet(scenario_name)
|
278 |
-
scenario_df_to_worksheet(scenario_df, ws)
|
279 |
summary_rows.append(['Total',
|
280 |
scenario_dict.get('modified_total_spends') ,
|
281 |
scenario_dict.get('modified_total_sales'),
|
@@ -305,8 +358,8 @@ def disable_download_button():
|
|
305 |
def transform(x):
|
306 |
if x.name == ("",'Channel'):
|
307 |
return x
|
308 |
-
elif x.name[0] == '
|
309 |
-
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=
|
310 |
else:
|
311 |
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
|
312 |
|
@@ -376,28 +429,40 @@ if auth_status == True:
|
|
376 |
column_1, column_2,column_3 = st.columns((6,1,1))
|
377 |
with column_1:
|
378 |
st.header(selected_scenario)
|
379 |
-
with column_2:
|
380 |
-
st.button('Delete scenarios', on_click=delete_scenario)
|
381 |
with column_3:
|
382 |
-
st.button('
|
|
|
|
|
383 |
|
384 |
selected_scenario_details = saved_scenarios[selected_scenario]
|
385 |
|
386 |
pd.set_option('display.max_colwidth', 100)
|
387 |
-
|
388 |
-
st.
|
389 |
-
|
390 |
-
'
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
399 |
|
400 |
-
|
401 |
st.header("Scenario comparison")
|
402 |
if len(scenarios_to_compare)== 0:
|
403 |
st.write("")
|
|
|
20 |
load_local_css('styles.css')
|
21 |
set_header()
|
22 |
|
23 |
+
st.title("Saved Scenarios")
|
24 |
# for k, v in st.session_state.items():
|
25 |
# if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
|
26 |
# st.session_state[k] = v
|
|
|
88 |
_df = _df.set_index('Channel')
|
89 |
summary_df_prospect = summary_df_prospect.merge(_df, left_index=True, right_index=True)
|
90 |
st.session_state['disable_download_button'] = False
|
91 |
+
|
92 |
+
efficiency_df = pd.DataFrame(index = summary_df_prospect.index)
|
93 |
+
|
94 |
+
for c in summary_df_spend.columns:
|
95 |
+
efficiency_df[c] = (summary_df_prospect[c]/summary_df_prospect[c].sum())/(summary_df_spend[c]/summary_df_spend[c].sum())
|
96 |
+
efficiency_df[c] = efficiency_df[c].round(2)
|
97 |
+
|
98 |
+
return summary_df_spend,summary_df_prospect,efficiency_df
|
99 |
|
100 |
|
101 |
|
|
|
115 |
|
116 |
# Create the layout
|
117 |
layout = go.Layout(
|
118 |
+
title='Comparing '+ metric,
|
119 |
xaxis_title="Channels",
|
120 |
yaxis_title=metric,
|
121 |
barmode='group'
|
|
|
127 |
return fig
|
128 |
|
129 |
def create_comparison_plots():
|
130 |
+
# comparison_scenarios_df()
|
131 |
+
spends_df, prospects_df, efficiency_df = comparison_scenarios_df()
|
132 |
+
# st.dataframe(spends_df)
|
133 |
st.plotly_chart(plot_comparison_chart(spends_df,"Spends"),use_container_width=True)
|
134 |
st.plotly_chart(plot_comparison_chart(prospects_df,"Contributions"),use_container_width=True)
|
135 |
+
st.plotly_chart(plot_comparison_chart(efficiency_df,"Efficiency"),use_container_width=True)
|
136 |
+
|
137 |
def create_scenario_summary(scenario_dict):
|
138 |
summary_rows = []
|
139 |
actual_total_spends = scenario_dict.get('actual_total_spends'),
|
|
|
146 |
# st.write(actual_total_sales[0])
|
147 |
# st.write(modified_total_spends[0])
|
148 |
for channel_dict in scenario_dict['channels']:
|
149 |
+
# st.write(channel_dict['name'])
|
150 |
name_mod = channel_name_formating(channel_dict['name'])
|
151 |
summary_rows.append([name_mod,
|
152 |
channel_dict.get('actual_total_spends') * channel_dict.get('conversion_rate'),
|
|
|
180 |
# scenario_dict.get('modified_total_spends') / scenario_dict.get('modified_total_sales')
|
181 |
])
|
182 |
|
183 |
+
adf = pd.DataFrame(summary_rows)
|
184 |
+
# st.write(adf.columns)
|
185 |
|
186 |
+
adf.columns = ["1","2","3","4","5","6","7"]
|
187 |
+
adf.index = adf["1"].to_list() #["1","2","3","4","5","6","7","8","9","10","11","12","13","14"]
|
188 |
+
adf.drop(columns= ["1"],inplace= True)
|
189 |
+
# columns_index = pd.MultiIndex.from_product([[''],['Channel']], names=["",""])
|
190 |
+
# columns_index = columns_index.append(pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""]))
|
191 |
+
columns_index = pd.MultiIndex.from_product([['Spends','Prospects',"Efficiency"],['Actual','Simulated']], names=["",""])
|
192 |
+
adf.columns = columns_index
|
193 |
+
return adf # pd.DataFrame(summary_rows, columns=columns_index)
|
194 |
|
195 |
|
196 |
|
197 |
def summary_df_to_worksheet(df, ws):
|
198 |
+
heading_fill = PatternFill(fill_type='solid',start_color='FFFFFFFF',end_color='FFFFFFFF')
|
199 |
+
|
200 |
+
# Define border style
|
201 |
+
border_style = Border(
|
202 |
+
left=Side(border_style='thin', color='00000000'),
|
203 |
+
right=Side(border_style='thin', color='00000000'),
|
204 |
+
top=Side(border_style='thin', color='00000000'),
|
205 |
+
bottom=Side(border_style='thin', color='00000000')
|
206 |
+
)
|
207 |
+
number_format = '0.00'
|
208 |
for j,header in enumerate(df.columns.values):
|
209 |
col = j + 1
|
210 |
for i in range(1,3):
|
211 |
+
ws.cell(row=i, column=j + 1, value=header[i - 1]).font = Font(bold=True, color='00000000')
|
212 |
ws.cell(row=i,column=j+1).fill = heading_fill
|
213 |
+
# ws.cell.border = border_style
|
214 |
if col > 1 and (col - 6)%5==0:
|
215 |
ws.merge_cells(start_row=1, end_row=1, start_column = col-3, end_column=col)
|
216 |
ws.cell(row=1,column=col).alignment = Alignment(horizontal='center')
|
217 |
+
# ws.cell.border = border_style
|
218 |
+
# Apply borders to all cells, including empty cells
|
219 |
+
for row in ws.iter_rows():
|
220 |
+
for cell in row:
|
221 |
+
cell.border = border_style
|
222 |
+
|
223 |
for i,row in enumerate(df.itertuples()):
|
224 |
for j,value in enumerate(row):
|
225 |
if j == 0:
|
226 |
continue
|
227 |
+
# elif (j-2)%4 == 0 or (j-3)%4 == 0:
|
228 |
+
# ws.cell(row=i+3, column = j, value=value)
|
229 |
+
# # cell.border = border_style
|
230 |
+
# # .number_format = '$#,##0.0'
|
231 |
+
# if isinstance(value, (int, float)):
|
232 |
+
# cell.number_format = number_format
|
233 |
else:
|
234 |
ws.cell(row=i+3, column = j, value=value)
|
235 |
+
# cell.border = border_style
|
236 |
+
if isinstance(value, (int, float)):
|
237 |
+
cell.number_format = '$#,##0.0'
|
238 |
+
# cell.number_format = number_format
|
239 |
+
# Auto-size columns
|
240 |
+
for col in ws.columns:
|
241 |
+
max_length = 15
|
242 |
+
column = col[0].column_letter
|
243 |
+
for cell in col:
|
244 |
+
try:
|
245 |
+
if len(str(cell.value)) > max_length:
|
246 |
+
max_length = len(cell.value)
|
247 |
+
except:
|
248 |
+
pass
|
249 |
+
adjusted_width = (max_length + 2)
|
250 |
+
ws.column_dimensions[column].width = adjusted_width
|
251 |
|
252 |
from openpyxl.utils import get_column_letter
|
253 |
from openpyxl.styles import Font, PatternFill
|
254 |
+
from openpyxl.styles import PatternFill, Font, Alignment, Border, Side
|
255 |
import logging
|
256 |
|
257 |
def scenario_df_to_worksheet(df, ws):
|
|
|
327 |
scenario_df = pd.DataFrame(_spends).T
|
328 |
scenario_df.columns = column_names
|
329 |
## write to sheet
|
330 |
+
# ws = wb.create_sheet(scenario_name)
|
331 |
+
# scenario_df_to_worksheet(scenario_df, ws)
|
332 |
summary_rows.append(['Total',
|
333 |
scenario_dict.get('modified_total_spends') ,
|
334 |
scenario_dict.get('modified_total_sales'),
|
|
|
358 |
def transform(x):
|
359 |
if x.name == ("",'Channel'):
|
360 |
return x
|
361 |
+
elif x.name[0] == 'Efficiency' or x.name[0] == 'MROI':
|
362 |
+
return x.apply(lambda y : y if isinstance(y,str) else decimal_formater(format_numbers(y,include_indicator=False,n_decimals=2),n_decimals=2))
|
363 |
else:
|
364 |
return x.apply(lambda y : y if isinstance(y,str) else format_numbers(y))
|
365 |
|
|
|
429 |
column_1, column_2,column_3 = st.columns((6,1,1))
|
430 |
with column_1:
|
431 |
st.header(selected_scenario)
|
|
|
|
|
432 |
with column_3:
|
433 |
+
st.button('Delete scenarios', on_click=delete_scenario)
|
434 |
+
# with column_3:
|
435 |
+
# st.button('Load Scenario', on_click=load_scenario)
|
436 |
|
437 |
selected_scenario_details = saved_scenarios[selected_scenario]
|
438 |
|
439 |
pd.set_option('display.max_colwidth', 100)
|
440 |
+
# st.table(create_scenario_summary(selected_scenario_details))
|
441 |
+
# st.table(create_scenario_summary(selected_scenario_details).transform(transform))
|
442 |
+
adf = create_scenario_summary(selected_scenario_details).transform(transform)
|
443 |
+
# adf1 = adf[('Spends', 'Actual'),
|
444 |
+
# ( 'Spends', 'Simulated'),
|
445 |
+
# ( 'Prospects','Actual'),
|
446 |
+
# ( 'Prospects', 'Simulated')].transform(transform)
|
447 |
+
# adf2 = adf[('Efficiency', 'Actual'),
|
448 |
+
# ('Efficiency', 'Simulated')].round(2)
|
449 |
+
# st.write(adf.columns)
|
450 |
+
# adf = adf.set_index([('', 'Channel')])#, inplace=True)
|
451 |
+
# st.table(adf)
|
452 |
+
st.markdown(adf.style.set_table_styles(
|
453 |
+
[
|
454 |
+
# {
|
455 |
+
# 'selector': 'th',
|
456 |
+
# 'props': [('background-color', '#1167bd')]
|
457 |
+
# },
|
458 |
+
# {
|
459 |
+
# 'selector' : 'tr:nth-child(even)',
|
460 |
+
# 'props' : [('background-color', '#11B6BD')]
|
461 |
+
# }
|
462 |
+
]).to_html(),unsafe_allow_html=True)
|
463 |
st.markdown("<br><br>", unsafe_allow_html=True)
|
464 |
|
465 |
+
with st.expander('Scenario comparison'):
|
466 |
st.header("Scenario comparison")
|
467 |
if len(scenarios_to_compare)== 0:
|
468 |
st.write("")
|
response_curves_model_quality_base.py
CHANGED
@@ -220,6 +220,7 @@ def response_curves(channel,chart_typ):
|
|
220 |
|
221 |
# Update layout with titles
|
222 |
fig.update_layout(
|
|
|
223 |
title=channel+' Response Curve',
|
224 |
xaxis_title='Weekly Spends',
|
225 |
yaxis_title='Prospects'
|
|
|
220 |
|
221 |
# Update layout with titles
|
222 |
fig.update_layout(
|
223 |
+
width=700, height=500,
|
224 |
title=channel+' Response Curve',
|
225 |
xaxis_title='Weekly Spends',
|
226 |
yaxis_title='Prospects'
|
summary_df.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1822
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eec7e117e96a7d10019a7e5cc889c769bdc4ae798cb0271c9870ee71e805b95
|
3 |
size 1822
|
utilities.py
CHANGED
@@ -957,7 +957,23 @@ def channel_name_formating(channel_name):
|
|
957 |
name_mod = name_mod.replace("Imp", "Spend")
|
958 |
elif name_mod.lower().endswith(" clicks"):
|
959 |
name_mod = name_mod.replace("Clicks", "Spend")
|
960 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
961 |
|
962 |
|
963 |
def send_email(email, message):
|
|
|
957 |
name_mod = name_mod.replace("Imp", "Spend")
|
958 |
elif name_mod.lower().endswith(" clicks"):
|
959 |
name_mod = name_mod.replace("Clicks", "Spend")
|
960 |
+
# st.write(channel_name)
|
961 |
+
key_dict = my_dict = {
|
962 |
+
"DisplayProspecting" :"Display Prospecting",
|
963 |
+
"CableTV" :"Cable TV",
|
964 |
+
"SocialProspecting": "Social Prospecting",
|
965 |
+
"Connected&OTTTV" :"Connected & OTTTV",
|
966 |
+
"SocialRetargeting" : "Social Retargeting",
|
967 |
+
"DigitalPartners" :"Digital Partners",
|
968 |
+
"Audio" :"Audio",
|
969 |
+
"BroadcastTV": "Broadcast TV",
|
970 |
+
"SearchNon-brand": "Search Non-brand",
|
971 |
+
"Email" :"Email" ,
|
972 |
+
"SearchBrand": "Search Brand",
|
973 |
+
"DisplayRetargeting" : "Display Retargeting" ,
|
974 |
+
"\xa0Video":"Video"
|
975 |
+
}
|
976 |
+
return key_dict[channel_name]
|
977 |
|
978 |
|
979 |
def send_email(email, message):
|