langcache-embed-v1 / README.md
waris-gill's picture
Update README.md
80fb95b verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - loss:OnlineContrastiveLoss
base_model: Alibaba-NLP/gte-modernbert-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_precision
  - cosine_recall
  - cosine_f1
  - cosine_ap
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
    results:
      - task:
          type: my-binary-classification
          name: My Binary Classification
        dataset:
          name: Quora
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 0.9
            name: Cosine Accuracy
          - type: cosine_f1
            value: 0.87
            name: Cosine F1
          - type: cosine_precision
            value: 0.84
            name: Cosine Precision
          - type: cosine_recall
            value: 0.9
            name: Cosine Recall
          - type: cosine_ap
            value: 0.92
            name: Cosine Ap

Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the Quora dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-modernbert-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v1")
# Run inference
sentences = [
    'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
    'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
    "Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)

Binary Classification

Metric Value
cosine_accuracy 0.90
cosine_f1 0.87
cosine_precision 0.84
cosine_recall 0.90
cosine_ap 0.92

Training Dataset

Quora

  • Dataset: Quora
  • Size: 323491 training samples
  • Columns: question_1, question_2, and label

Evaluation Dataset

Quora

  • Dataset: Quora
  • Size: 53486 evaluation samples
  • Columns: question_1, question_2, and label

Citation

BibTeX

Redis Langcache-embed Models

@inproceedings{langcache-embed-v1,
    title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data",
    author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion",
    month = "04",
    year = "2025",
    url = "https://arxiv.org/abs/2504.02268",
}

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}