Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the Quora dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-modernbert-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("redis/langcache-embed-v1")
# Run inference
sentences = [
    'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
    'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
    "Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)

Binary Classification

Metric Value
cosine_accuracy 0.90
cosine_f1 0.87
cosine_precision 0.84
cosine_recall 0.90
cosine_ap 0.92

Training Dataset

Quora

  • Dataset: Quora
  • Size: 323491 training samples
  • Columns: question_1, question_2, and label

Evaluation Dataset

Quora

  • Dataset: Quora
  • Size: 53486 evaluation samples
  • Columns: question_1, question_2, and label

Citation

BibTeX

Redis Langcache-embed Models

@inproceedings{langcache-embed-v1,
    title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data",
    author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion",
    month = "04",
    year = "2025",
    url = "https://arxiv.org/abs/2504.02268",
}

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
341
Safetensors
Model size
149M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for redis/langcache-embed-v1

Finetuned
(11)
this model

Evaluation results