gte-modernbert-base
We are excited to introduce the gte-modernbert
series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The gte-modernbert
series models include both text embedding models and rerank models.
The gte-modernbert
models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as MTEB, LoCO, and COIR evaluation.
Model Overview
- Developed by: Tongyi Lab, Alibaba Group
- Model Type: Text Embedding
- Primary Language: English
- Model Size: 149M
- Max Input Length: 8192 tokens
- Output Dimension: 768
Model list
Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
---|---|---|---|---|---|---|---|---|---|
gte-modernbert-base |
English | text embedding | 149M | 8192 | 768 | 64.38 | 55.33 | 87.57 | 79.31 |
gte-reranker-modernbert-base |
English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
Usage
For
transformers
andsentence-transformers
, if your GPU supports it, the efficient Flash Attention 2 will be used automatically if you haveflash_attn
installed. It is not mandatory.pip install flash_attn
Use with transformers
# Requires transformers>=4.48.0
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
model_path = "Alibaba-NLP/gte-modernbert-base"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path)
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = outputs.last_hidden_state[:, 0]
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
# [[42.89073944091797, 71.30911254882812, 33.664554595947266]]
Use with sentence-transformers
:
# Requires transformers>=4.48.0
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
model = SentenceTransformer("Alibaba-NLP/gte-modernbert-base")
embeddings = model.encode(input_texts)
print(embeddings.shape)
# (4, 768)
similarities = cos_sim(embeddings[0], embeddings[1:])
print(similarities)
# tensor([[0.4289, 0.7131, 0.3366]])
Use with transformers.js
:
// npm i @huggingface/transformers
import { pipeline, matmul } from "@huggingface/transformers";
// Create a feature extraction pipeline
const extractor = await pipeline(
"feature-extraction",
"Alibaba-NLP/gte-modernbert-base",
{ dtype: "fp32" }, // Supported options: "fp32", "fp16", "q8", "q4", "q4f16"
);
// Embed queries and documents
const embeddings = await extractor(
[
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms",
],
{ pooling: "cls", normalize: true },
);
// Compute similarity scores
const similarities = (await matmul(embeddings.slice([0, 1]), embeddings.slice([1, null]).transpose(1, 0))).mul(100);
console.log(similarities.tolist()); // [[42.89077377319336, 71.30916595458984, 33.66455841064453]]
Training Details
The gte-modernbert
series of models follows the training scheme of the previous GTE models, with the only difference being that the pre-training language model base has been replaced from GTE-MLM to ModernBert. For more training details, please refer to our paper: mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval
Evaluation
MTEB
The results of other models are retrieved from MTEB leaderboard. Given that all models in the gte-modernbert
series have a size of less than 1B parameters, we focused exclusively on the results of models under 1B from the MTEB leaderboard.
Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
---|---|---|---|---|---|---|---|---|---|---|---|
mxbai-embed-large-v1 | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
multilingual-e5-large-instruct | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
bge-large-en-v1.5 | 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
gte-base-en-v1.5 | 137 | 768 | 8192 | 64.11 | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
bge-base-en-v1.5 | 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
gte-large-en-v1.5 | 409 | 1024 | 8192 | 65.39 | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
modernbert-embed-base | 149 | 768 | 8192 | 62.62 | 74.31 | 44.98 | 83.96 | 56.42 | 52.89 | 81.78 | 31.39 |
nomic-embed-text-v1.5 | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01 | 81.94 | 30.4 | |
gte-multilingual-base | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 | 51.08 | 82.11 | 30.58 |
jina-embeddings-v3 | 572 | 1024 | 8192 | 65.51 | 82.58 | 45.21 | 84.01 | 58.13 | 53.88 | 85.81 | 29.71 |
gte-modernbert-base | 149 | 768 | 8192 | 64.38 | 76.99 | 46.47 | 85.93 | 59.24 | 55.33 | 81.57 | 30.68 |
LoCo (Long Document Retrieval)(NDCG@10)
Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
---|---|---|---|---|---|---|---|---|
gte-qwen1.5-7b | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
gte-large-v1.5 | 1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
gte-base-v1.5 | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
gte-modernbert-base | 768 | 8192 | 88.88 | 54.45 | 93.00 | 99.82 | 98.03 | 98.70 |
gte-reranker-modernbert-base | - | 8192 | 90.68 | 70.86 | 94.06 | 99.73 | 99.11 | 89.67 |
COIR (Code Retrieval Task)(NDCG@10)
Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gte-modernbert-base | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
gte-reranker-modernbert-base | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
BEIR(NDCG@10)
Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gte-modernbert-base | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
gte-reranker-modernbert-base | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
Hiring
We have open positions for Research Interns and Full-Time Researchers to join our team at Tongyi Lab. We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. Our team is located in the vibrant cities of Beijing and Hangzhou. If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to [email protected].
Citation
If you find our paper or models helpful, feel free to give us a cite.
@inproceedings{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
pages={1393--1412},
year={2024}
}
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
- Downloads last month
- 519