File size: 5,117 Bytes
e3301ee 20a9ae8 e3301ee 20a9ae8 e3301ee 3eaf8cf e3301ee 3eaf8cf e3301ee 3eaf8cf e3301ee 3eaf8cf e3301ee 3eaf8cf e3301ee 1133cb1 e3301ee a5c1a8d e3301ee a5c1a8d e3301ee 20a9ae8 e3301ee 80fb95b e3301ee 6cd60e2 e3301ee 6cd60e2 e3301ee 3eaf8cf e3301ee a5c1a8d e3301ee a5c1a8d 3eaf8cf e3301ee a5c1a8d e3301ee a5c1a8d 3eaf8cf e3301ee a5c1a8d 64c1b7f a5c1a8d e3301ee a5c1a8d e3301ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
tags:
- sentence-transformers
- sentence-similarity
- loss:OnlineContrastiveLoss
base_model: Alibaba-NLP/gte-modernbert-base
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_precision
- cosine_recall
- cosine_f1
- cosine_ap
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
results:
- task:
type: my-binary-classification
name: My Binary Classification
dataset:
name: Quora
type: unknown
metrics:
- type: cosine_accuracy
value: 0.90
name: Cosine Accuracy
- type: cosine_f1
value: 0.87
name: Cosine F1
- type: cosine_precision
value: 0.84
name: Cosine Precision
- type: cosine_recall
value: 0.90
name: Cosine Recall
- type: cosine_ap
value: 0.92
name: Cosine Ap
---
# Redis semantic caching embedding model based on Alibaba-NLP/gte-modernbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) <!-- at revision bc02f0a92d1b6dd82108036f6cb4b7b423fb7434 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v1")
# Run inference
sentences = [
'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
"Are Danish Sait's prank calls fake?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
```
#### Binary Classification
| Metric | Value |
|:--------------------------|:----------|
| cosine_accuracy | 0.90 |
| cosine_f1 | 0.87 |
| cosine_precision | 0.84 |
| cosine_recall | 0.90 |
| **cosine_ap** | 0.92 |
### Training Dataset
#### Quora
* Dataset: [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset)
* Size: 323491 training samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
### Evaluation Dataset
#### Quora
* Dataset: [Quora](https://www.kaggle.com/datasets/quora/question-pairs-dataset)
* Size: 53486 evaluation samples
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
## Citation
### BibTeX
#### Redis Langcache-embed Models
```bibtex
@inproceedings{langcache-embed-v1,
title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data",
author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion",
month = "04",
year = "2025",
url = "https://arxiv.org/abs/2504.02268",
}
```
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
|