|
--- |
|
license: apache-2.0 |
|
language: |
|
- it |
|
pipeline_tag: text-classification |
|
widget: |
|
- text: "Ripartire la parola d'ordine, al governo chiediamo di accelerare la campagna sui vaccini e di lavorare a un cronoprogramma delle riaperture. Dobbiamo dare una prospettiva di rinascita a tutti gli italiani, dall'opposizione ancora all'attacco del governo, gli italiani sono esausti di fare sacrifici che non portano a nulla. Sono quattro le persone indagate dalla Procura di Roma per le minacce via mail al ministro della Salute. Tra ottobre del 2020 e il gennaio del 2021 avrebbero inviato al ministro dei messaggi dal contenuto gravemente minaccioso. Al ministro la solidarietà di tutto il mondo politico e a causa della pandemia si assottigliano i redditi delle famiglie italiane. Aumenta anche la pressione fiscale. Lo rileva l'Istat." |
|
- text: "Le terapie intensive hanno superato la soglia del 30% di riempimento. La lotta al virus e anche lotta alle fake news, prosegue la collaborazione tra ministero della Salute e Twitter quando si cercano notizie sul Covid del Social rimanda le pagine del ministero, includendo anche le ultime informazioni sui vaccini. COVID-19 è stato l'hashtag più twittato a livello globale nel 2020. La poltrona negata da Erdogan ad Ursula von der Leyen, lo avete sentito? Fa ancora discutere dentro e fuori dal Parlamento europeo: Marco Clementi. " |
|
- text: "I bambini che soffrono di autismo hanno gli stessi diritti di tutti gli altri bambini sottolinea garante per l'infanzia, occorre dunque fare rete tra famiglia, scuola, pediatri e servizi sociali. Domani mattina alle 705 su Rai Uno torna la nostra rubrica di approfondimento 7 giorni. L'anticipazione nel servizio." |
|
--- |
|
# Model Card for raicrits/topicChangeDetector_v1 |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
This model analyses the input text and provides an answer whether in the text there is a change of topic or not (resp. TOPPICCHANGE, SAMETOPIC). |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
|
|
<!-- Provide a longer summary of what this model is. --> |
|
|
|
|
|
|
|
- **Developed by:** Alberto Messina ([email protected]) |
|
- **Model type:** BERT for Sequence Classification |
|
- **Language(s) (NLP):** Italian |
|
- **License:** TBD |
|
- **Finetuned from model:** https://huggingface.co/xlm-roberta-base |
|
|
|
### Model Sources [optional] |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** N/A |
|
- **Paper [optional]:** N/A |
|
- **Demo [optional]:** N/A |
|
|
|
## Uses |
|
|
|
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> |
|
The model should be used giving a short paragraph of text in Italian as input |
|
about which it is requested to get an answer about whether or not it contains a change of topic. |
|
|
|
### Direct Use |
|
|
|
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> |
|
|
|
TBA |
|
|
|
### Out-of-Scope Use |
|
|
|
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> |
|
|
|
The model should not be used as a general purpose topic change detector, i.e. on text which is not originated from news programme transcription or siilar content. |
|
|
|
|
|
## Bias, Risks, and Limitations |
|
|
|
<!-- This section is meant to convey both technical and sociotechnical limitations. --> |
|
|
|
The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind |
|
of topics that can be tracked for change. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
TBA |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
TBA |
|
|
|
### Training Procedure |
|
|
|
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> |
|
|
|
#### Preprocessing [optional] |
|
|
|
TBA |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
- **Training regime:** Mixed Precision |
|
|
|
## Evaluation |
|
|
|
<!-- This section describes the evaluation protocols and provides the results. --> |
|
TBA |
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
<!-- This should link to a Data Card if possible. --> |
|
|
|
TBA |
|
|
|
#### Metrics |
|
|
|
<!-- These are the evaluation metrics being used, ideally with a description of why. --> |
|
|
|
TBA |
|
|
|
### Results |
|
|
|
TBA |
|
|
|
#### Summary |
|
|
|
TBA |
|
|
|
## Environmental Impact |
|
|
|
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> |
|
|
|
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). |
|
|
|
- **Hardware Type:** 2 NVIDIA A100/40Gb |
|
- **Hours used:** 2 |
|
- **Cloud Provider:** Private Infrastructure |
|
- **Carbon Emitted:** 0.22 kg CO2 eq. |
|
|
|
## Glossary [optional] |
|
|
|
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> |
|
|
|
TBA |
|
|
|
## More Information [optional] |
|
|
|
TBA |
|
|
|
## Model Card Authors [optional] |
|
|
|
Alberto Messina |
|
|
|
## Model Card Contact |
|
|
|
[email protected] |
|
|
|
|
|
|