Text Classification
Transformers
PyTorch
Italian
Inference Endpoints
File size: 5,310 Bytes
32821b8
 
 
 
 
584a772
b677747
c49faf6
7b6e087
1e51a2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dbe282
1e51a2c
 
 
 
 
1ee75ab
 
 
1e51a2c
 
 
 
1ee75ab
 
1e51a2c
 
 
 
 
1ee75ab
1e51a2c
 
 
 
 
1ee75ab
 
1e51a2c
 
 
 
 
1ee75ab
 
1e51a2c
 
 
 
 
1ee75ab
1e51a2c
 
 
 
 
 
 
1ee75ab
1e51a2c
 
 
 
 
 
 
1ee75ab
1e51a2c
 
 
 
1ee75ab
1e51a2c
 
 
 
1ee75ab
1e51a2c
 
 
 
 
 
 
1ee75ab
1e51a2c
 
 
 
 
1ee75ab
1e51a2c
 
 
1ee75ab
1e51a2c
 
 
1ee75ab
1e51a2c
 
 
 
 
 
 
1ee75ab
 
 
 
1e51a2c
 
 
 
 
1ee75ab
1e51a2c
 
 
1ee75ab
1e51a2c
 
 
1ee75ab
1e51a2c
 
 
1ee75ab
1e51a2c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
---
license: apache-2.0
language:
- it
pipeline_tag: text-classification
widget:
- text: "Ripartire la parola d'ordine, al governo chiediamo di accelerare la campagna sui vaccini e di lavorare a un cronoprogramma delle riaperture. Dobbiamo dare una prospettiva di rinascita a tutti gli italiani, dall'opposizione ancora all'attacco del governo, gli italiani sono esausti di fare sacrifici che non portano a nulla. Sono quattro le persone indagate dalla Procura di Roma per le minacce via mail al ministro della Salute. Tra ottobre del 2020 e il gennaio del 2021 avrebbero inviato al ministro dei messaggi dal contenuto gravemente minaccioso. Al ministro la solidarietà di tutto il mondo politico e a causa della pandemia si assottigliano i redditi delle famiglie italiane. Aumenta anche la pressione fiscale. Lo rileva l'Istat."
- text: "Le terapie intensive hanno superato la soglia del 30% di riempimento. La lotta al virus e anche lotta alle fake news, prosegue la collaborazione tra ministero della Salute e Twitter quando si cercano notizie sul Covid del Social rimanda le pagine del ministero, includendo anche le ultime informazioni sui vaccini. COVID-19 è stato l'hashtag più twittato a livello globale nel 2020. La poltrona negata da Erdogan ad Ursula von der Leyen, lo avete sentito? Fa ancora discutere dentro e fuori dal Parlamento europeo: Marco Clementi. "
- text: "I bambini che soffrono di autismo hanno gli stessi diritti di tutti gli altri bambini sottolinea garante per l'infanzia, occorre dunque fare rete tra famiglia, scuola, pediatri e servizi sociali. Domani mattina alle 705 su Rai Uno torna la nostra rubrica di approfondimento 7 giorni. L'anticipazione nel servizio."
---
# Model Card for raicrits/topicChangeDetector_v1

<!-- Provide a quick summary of what the model is/does. -->

This model analyses the input text and provides an answer whether in the text there is a change of topic or not (resp. TOPPICCHANGE, SAMETOPIC).

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->



- **Developed by:** Alberto Messina ([email protected])
- **Model type:** BERT for Sequence Classification
- **Language(s) (NLP):** Italian
- **License:** TBD
- **Finetuned from model:** https://huggingface.co/xlm-roberta-base

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** N/A
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The model should be used giving a short paragraph of text in Italian as input 
about which it is requested to get an answer about whether or not it contains a change of topic.

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

TBA

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

The model should not be used as a general purpose topic change detector, i.e. on text which is not originated from news programme transcription or siilar content.


## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind
of topics that can be tracked for change.

## How to Get Started with the Model

Use the code below to get started with the model.

TBA

## Training Details

### Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

TBA

### Training Procedure 

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

TBA


#### Training Hyperparameters

- **Training regime:** Mixed Precision 

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->
TBA

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Data Card if possible. -->

TBA

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

TBA

### Results

TBA

#### Summary

TBA

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** 2 NVIDIA A100/40Gb
- **Hours used:** 2
- **Cloud Provider:** Private Infrastructure
- **Carbon Emitted:** 0.22 kg CO2 eq.

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

TBA

## More Information [optional]

TBA

## Model Card Authors [optional]

Alberto Messina

## Model Card Contact

[email protected]