batyrme's picture
Push model using huggingface_hub.
458ba08 verified
---
base_model: intfloat/multilingual-e5-large-instruct
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '"Он подарил мне красивое кольцо и прекрасную вечеринку на нашу годовщину."
Бұл мәтінді қазақ тіліне аударып беріңізші.'
- text: Would you please put that cigarette out? I get sick on it.
- text: Сәлем!
- text: Никусор Эшану
- text: How time flies! We have been lovers for nearly a year. We hit it off instantly.
inference: true
model-index:
- name: SetFit with intfloat/multilingual-e5-large-instruct
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9955398215928637
name: Accuracy
---
# SetFit with intfloat/multilingual-e5-large-instruct
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rag | <ul><li>'Саксон эпизоды туралы қандай тарихи құжатта мәлімет берілген?'</li><li>'Uttermost өзінің жарыс мансабында қандай маңызды жетістіктерге қол жеткізді?'</li><li>'Ричард Бахтелл'</li></ul> |
| no_rag | <ul><li>'Just a moment, please.'</li><li>'орыс тіліндегі "Я рабочий." сөйлемінің қазақ тіліндегі аудармасы не?'</li><li>'You look tired. Did you sleep well last night?'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9955 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3")
# Run inference
preds = model("Сәлем!")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 10.0022 | 138 |
| Label | Training Sample Count |
|:-------|:----------------------|
| no_rag | 218 |
| rag | 241 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0003 | 1 | 0.3567 | - |
| 0.0151 | 50 | 0.2851 | - |
| 0.0302 | 100 | 0.0943 | - |
| 0.0452 | 150 | 0.0123 | - |
| 0.0603 | 200 | 0.0099 | - |
| 0.0754 | 250 | 0.0056 | - |
| 0.0905 | 300 | 0.0011 | - |
| 0.1056 | 350 | 0.0003 | - |
| 0.1207 | 400 | 0.0002 | - |
| 0.1357 | 450 | 0.0001 | - |
| 0.1508 | 500 | 0.0001 | - |
| 0.1659 | 550 | 0.0001 | - |
| 0.1810 | 600 | 0.0001 | - |
| 0.1961 | 650 | 0.0001 | - |
| 0.2112 | 700 | 0.0001 | - |
| 0.2262 | 750 | 0.0001 | - |
| 0.2413 | 800 | 0.0001 | - |
| 0.2564 | 850 | 0.0001 | - |
| 0.2715 | 900 | 0.0001 | - |
| 0.2866 | 950 | 0.0001 | - |
| 0.3017 | 1000 | 0.0001 | - |
| 0.3167 | 1050 | 0.0001 | - |
| 0.3318 | 1100 | 0.0001 | - |
| 0.3469 | 1150 | 0.0001 | - |
| 0.3620 | 1200 | 0.0001 | - |
| 0.3771 | 1250 | 0.0001 | - |
| 0.3922 | 1300 | 0.0001 | - |
| 0.4072 | 1350 | 0.0001 | - |
| 0.4223 | 1400 | 0.0 | - |
| 0.4374 | 1450 | 0.0 | - |
| 0.4525 | 1500 | 0.0 | - |
| 0.4676 | 1550 | 0.0 | - |
| 0.4827 | 1600 | 0.0 | - |
| 0.4977 | 1650 | 0.0 | - |
| 0.5128 | 1700 | 0.0 | - |
| 0.5279 | 1750 | 0.0 | - |
| 0.5430 | 1800 | 0.0 | - |
| 0.5581 | 1850 | 0.0 | - |
| 0.5732 | 1900 | 0.0 | - |
| 0.5882 | 1950 | 0.0 | - |
| 0.6033 | 2000 | 0.0 | - |
| 0.6184 | 2050 | 0.0 | - |
| 0.6335 | 2100 | 0.0 | - |
| 0.6486 | 2150 | 0.0 | - |
| 0.6637 | 2200 | 0.0 | - |
| 0.6787 | 2250 | 0.0 | - |
| 0.6938 | 2300 | 0.0 | - |
| 0.7089 | 2350 | 0.0 | - |
| 0.7240 | 2400 | 0.0 | - |
| 0.7391 | 2450 | 0.0 | - |
| 0.7541 | 2500 | 0.0 | - |
| 0.7692 | 2550 | 0.0 | - |
| 0.7843 | 2600 | 0.0 | - |
| 0.7994 | 2650 | 0.0 | - |
| 0.8145 | 2700 | 0.0 | - |
| 0.8296 | 2750 | 0.0 | - |
| 0.8446 | 2800 | 0.0 | - |
| 0.8597 | 2850 | 0.0 | - |
| 0.8748 | 2900 | 0.0 | - |
| 0.8899 | 2950 | 0.0 | - |
| 0.9050 | 3000 | 0.0 | - |
| 0.9201 | 3050 | 0.0 | - |
| 0.9351 | 3100 | 0.0 | - |
| 0.9502 | 3150 | 0.0 | - |
| 0.9653 | 3200 | 0.0 | - |
| 0.9804 | 3250 | 0.0 | - |
| 0.9955 | 3300 | 0.0 | - |
### Framework Versions
- Python: 3.12.5
- SetFit: 1.1.0
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.4.0+cu121
- Datasets: 3.0.1
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->