|
--- |
|
base_model: intfloat/multilingual-e5-large-instruct |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '"Он подарил мне красивое кольцо и прекрасную вечеринку на нашу годовщину." |
|
Бұл мәтінді қазақ тіліне аударып беріңізші.' |
|
- text: Would you please put that cigarette out? I get sick on it. |
|
- text: Сәлем! |
|
- text: Никусор Эшану |
|
- text: How time flies! We have been lovers for nearly a year. We hit it off instantly. |
|
inference: true |
|
model-index: |
|
- name: SetFit with intfloat/multilingual-e5-large-instruct |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9955398215928637 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with intfloat/multilingual-e5-large-instruct |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:-------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| rag | <ul><li>'Саксон эпизоды туралы қандай тарихи құжатта мәлімет берілген?'</li><li>'Uttermost өзінің жарыс мансабында қандай маңызды жетістіктерге қол жеткізді?'</li><li>'Ричард Бахтелл'</li></ul> | |
|
| no_rag | <ul><li>'Just a moment, please.'</li><li>'орыс тіліндегі "Я рабочий." сөйлемінің қазақ тіліндегі аудармасы не?'</li><li>'You look tired. Did you sleep well last night?'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9955 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3") |
|
# Run inference |
|
preds = model("Сәлем!") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 1 | 10.0022 | 138 | |
|
|
|
| Label | Training Sample Count | |
|
|:-------|:----------------------| |
|
| no_rag | 218 | |
|
| rag | 241 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (16, 16) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0003 | 1 | 0.3567 | - | |
|
| 0.0151 | 50 | 0.2851 | - | |
|
| 0.0302 | 100 | 0.0943 | - | |
|
| 0.0452 | 150 | 0.0123 | - | |
|
| 0.0603 | 200 | 0.0099 | - | |
|
| 0.0754 | 250 | 0.0056 | - | |
|
| 0.0905 | 300 | 0.0011 | - | |
|
| 0.1056 | 350 | 0.0003 | - | |
|
| 0.1207 | 400 | 0.0002 | - | |
|
| 0.1357 | 450 | 0.0001 | - | |
|
| 0.1508 | 500 | 0.0001 | - | |
|
| 0.1659 | 550 | 0.0001 | - | |
|
| 0.1810 | 600 | 0.0001 | - | |
|
| 0.1961 | 650 | 0.0001 | - | |
|
| 0.2112 | 700 | 0.0001 | - | |
|
| 0.2262 | 750 | 0.0001 | - | |
|
| 0.2413 | 800 | 0.0001 | - | |
|
| 0.2564 | 850 | 0.0001 | - | |
|
| 0.2715 | 900 | 0.0001 | - | |
|
| 0.2866 | 950 | 0.0001 | - | |
|
| 0.3017 | 1000 | 0.0001 | - | |
|
| 0.3167 | 1050 | 0.0001 | - | |
|
| 0.3318 | 1100 | 0.0001 | - | |
|
| 0.3469 | 1150 | 0.0001 | - | |
|
| 0.3620 | 1200 | 0.0001 | - | |
|
| 0.3771 | 1250 | 0.0001 | - | |
|
| 0.3922 | 1300 | 0.0001 | - | |
|
| 0.4072 | 1350 | 0.0001 | - | |
|
| 0.4223 | 1400 | 0.0 | - | |
|
| 0.4374 | 1450 | 0.0 | - | |
|
| 0.4525 | 1500 | 0.0 | - | |
|
| 0.4676 | 1550 | 0.0 | - | |
|
| 0.4827 | 1600 | 0.0 | - | |
|
| 0.4977 | 1650 | 0.0 | - | |
|
| 0.5128 | 1700 | 0.0 | - | |
|
| 0.5279 | 1750 | 0.0 | - | |
|
| 0.5430 | 1800 | 0.0 | - | |
|
| 0.5581 | 1850 | 0.0 | - | |
|
| 0.5732 | 1900 | 0.0 | - | |
|
| 0.5882 | 1950 | 0.0 | - | |
|
| 0.6033 | 2000 | 0.0 | - | |
|
| 0.6184 | 2050 | 0.0 | - | |
|
| 0.6335 | 2100 | 0.0 | - | |
|
| 0.6486 | 2150 | 0.0 | - | |
|
| 0.6637 | 2200 | 0.0 | - | |
|
| 0.6787 | 2250 | 0.0 | - | |
|
| 0.6938 | 2300 | 0.0 | - | |
|
| 0.7089 | 2350 | 0.0 | - | |
|
| 0.7240 | 2400 | 0.0 | - | |
|
| 0.7391 | 2450 | 0.0 | - | |
|
| 0.7541 | 2500 | 0.0 | - | |
|
| 0.7692 | 2550 | 0.0 | - | |
|
| 0.7843 | 2600 | 0.0 | - | |
|
| 0.7994 | 2650 | 0.0 | - | |
|
| 0.8145 | 2700 | 0.0 | - | |
|
| 0.8296 | 2750 | 0.0 | - | |
|
| 0.8446 | 2800 | 0.0 | - | |
|
| 0.8597 | 2850 | 0.0 | - | |
|
| 0.8748 | 2900 | 0.0 | - | |
|
| 0.8899 | 2950 | 0.0 | - | |
|
| 0.9050 | 3000 | 0.0 | - | |
|
| 0.9201 | 3050 | 0.0 | - | |
|
| 0.9351 | 3100 | 0.0 | - | |
|
| 0.9502 | 3150 | 0.0 | - | |
|
| 0.9653 | 3200 | 0.0 | - | |
|
| 0.9804 | 3250 | 0.0 | - | |
|
| 0.9955 | 3300 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.12.5 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.2.0 |
|
- Transformers: 4.45.2 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 3.0.1 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |