metadata
base_model: intfloat/multilingual-e5-large-instruct
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
"Он подарил мне красивое кольцо и прекрасную вечеринку на нашу годовщину."
Бұл мәтінді қазақ тіліне аударып беріңізші.
- text: Would you please put that cigarette out? I get sick on it.
- text: Сәлем!
- text: Никусор Эшану
- text: >-
How time flies! We have been lovers for nearly a year. We hit it off
instantly.
inference: true
model-index:
- name: SetFit with intfloat/multilingual-e5-large-instruct
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9955398215928637
name: Accuracy
SetFit with intfloat/multilingual-e5-large-instruct
This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-large-instruct as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: intfloat/multilingual-e5-large-instruct
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
rag |
|
no_rag |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.9955 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3")
# Run inference
preds = model("Сәлем!")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 10.0022 | 138 |
Label | Training Sample Count |
---|---|
no_rag | 218 |
rag | 241 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0003 | 1 | 0.3567 | - |
0.0151 | 50 | 0.2851 | - |
0.0302 | 100 | 0.0943 | - |
0.0452 | 150 | 0.0123 | - |
0.0603 | 200 | 0.0099 | - |
0.0754 | 250 | 0.0056 | - |
0.0905 | 300 | 0.0011 | - |
0.1056 | 350 | 0.0003 | - |
0.1207 | 400 | 0.0002 | - |
0.1357 | 450 | 0.0001 | - |
0.1508 | 500 | 0.0001 | - |
0.1659 | 550 | 0.0001 | - |
0.1810 | 600 | 0.0001 | - |
0.1961 | 650 | 0.0001 | - |
0.2112 | 700 | 0.0001 | - |
0.2262 | 750 | 0.0001 | - |
0.2413 | 800 | 0.0001 | - |
0.2564 | 850 | 0.0001 | - |
0.2715 | 900 | 0.0001 | - |
0.2866 | 950 | 0.0001 | - |
0.3017 | 1000 | 0.0001 | - |
0.3167 | 1050 | 0.0001 | - |
0.3318 | 1100 | 0.0001 | - |
0.3469 | 1150 | 0.0001 | - |
0.3620 | 1200 | 0.0001 | - |
0.3771 | 1250 | 0.0001 | - |
0.3922 | 1300 | 0.0001 | - |
0.4072 | 1350 | 0.0001 | - |
0.4223 | 1400 | 0.0 | - |
0.4374 | 1450 | 0.0 | - |
0.4525 | 1500 | 0.0 | - |
0.4676 | 1550 | 0.0 | - |
0.4827 | 1600 | 0.0 | - |
0.4977 | 1650 | 0.0 | - |
0.5128 | 1700 | 0.0 | - |
0.5279 | 1750 | 0.0 | - |
0.5430 | 1800 | 0.0 | - |
0.5581 | 1850 | 0.0 | - |
0.5732 | 1900 | 0.0 | - |
0.5882 | 1950 | 0.0 | - |
0.6033 | 2000 | 0.0 | - |
0.6184 | 2050 | 0.0 | - |
0.6335 | 2100 | 0.0 | - |
0.6486 | 2150 | 0.0 | - |
0.6637 | 2200 | 0.0 | - |
0.6787 | 2250 | 0.0 | - |
0.6938 | 2300 | 0.0 | - |
0.7089 | 2350 | 0.0 | - |
0.7240 | 2400 | 0.0 | - |
0.7391 | 2450 | 0.0 | - |
0.7541 | 2500 | 0.0 | - |
0.7692 | 2550 | 0.0 | - |
0.7843 | 2600 | 0.0 | - |
0.7994 | 2650 | 0.0 | - |
0.8145 | 2700 | 0.0 | - |
0.8296 | 2750 | 0.0 | - |
0.8446 | 2800 | 0.0 | - |
0.8597 | 2850 | 0.0 | - |
0.8748 | 2900 | 0.0 | - |
0.8899 | 2950 | 0.0 | - |
0.9050 | 3000 | 0.0 | - |
0.9201 | 3050 | 0.0 | - |
0.9351 | 3100 | 0.0 | - |
0.9502 | 3150 | 0.0 | - |
0.9653 | 3200 | 0.0 | - |
0.9804 | 3250 | 0.0 | - |
0.9955 | 3300 | 0.0 | - |
Framework Versions
- Python: 3.12.5
- SetFit: 1.1.0
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.4.0+cu121
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}