SetFit with intfloat/multilingual-e5-large-instruct

This is a SetFit model that can be used for Text Classification. This SetFit model uses intfloat/multilingual-e5-large-instruct as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
rag
  • 'Саксон эпизоды туралы қандай тарихи құжатта мәлімет берілген?'
  • 'Uttermost өзінің жарыс мансабында қандай маңызды жетістіктерге қол жеткізді?'
  • 'Ричард Бахтелл'
no_rag
  • 'Just a moment, please.'
  • 'орыс тіліндегі "Я рабочий." сөйлемінің қазақ тіліндегі аудармасы не?'
  • 'You look tired. Did you sleep well last night?'

Evaluation

Metrics

Label Accuracy
all 0.9955

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("nlp-team-issai/setfit-me5-large-instruct-v3")
# Run inference
preds = model("Сәлем!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.0022 138
Label Training Sample Count
no_rag 218
rag 241

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0003 1 0.3567 -
0.0151 50 0.2851 -
0.0302 100 0.0943 -
0.0452 150 0.0123 -
0.0603 200 0.0099 -
0.0754 250 0.0056 -
0.0905 300 0.0011 -
0.1056 350 0.0003 -
0.1207 400 0.0002 -
0.1357 450 0.0001 -
0.1508 500 0.0001 -
0.1659 550 0.0001 -
0.1810 600 0.0001 -
0.1961 650 0.0001 -
0.2112 700 0.0001 -
0.2262 750 0.0001 -
0.2413 800 0.0001 -
0.2564 850 0.0001 -
0.2715 900 0.0001 -
0.2866 950 0.0001 -
0.3017 1000 0.0001 -
0.3167 1050 0.0001 -
0.3318 1100 0.0001 -
0.3469 1150 0.0001 -
0.3620 1200 0.0001 -
0.3771 1250 0.0001 -
0.3922 1300 0.0001 -
0.4072 1350 0.0001 -
0.4223 1400 0.0 -
0.4374 1450 0.0 -
0.4525 1500 0.0 -
0.4676 1550 0.0 -
0.4827 1600 0.0 -
0.4977 1650 0.0 -
0.5128 1700 0.0 -
0.5279 1750 0.0 -
0.5430 1800 0.0 -
0.5581 1850 0.0 -
0.5732 1900 0.0 -
0.5882 1950 0.0 -
0.6033 2000 0.0 -
0.6184 2050 0.0 -
0.6335 2100 0.0 -
0.6486 2150 0.0 -
0.6637 2200 0.0 -
0.6787 2250 0.0 -
0.6938 2300 0.0 -
0.7089 2350 0.0 -
0.7240 2400 0.0 -
0.7391 2450 0.0 -
0.7541 2500 0.0 -
0.7692 2550 0.0 -
0.7843 2600 0.0 -
0.7994 2650 0.0 -
0.8145 2700 0.0 -
0.8296 2750 0.0 -
0.8446 2800 0.0 -
0.8597 2850 0.0 -
0.8748 2900 0.0 -
0.8899 2950 0.0 -
0.9050 3000 0.0 -
0.9201 3050 0.0 -
0.9351 3100 0.0 -
0.9502 3150 0.0 -
0.9653 3200 0.0 -
0.9804 3250 0.0 -
0.9955 3300 0.0 -

Framework Versions

  • Python: 3.12.5
  • SetFit: 1.1.0
  • Sentence Transformers: 3.2.0
  • Transformers: 4.45.2
  • PyTorch: 2.4.0+cu121
  • Datasets: 3.0.1
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
260
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nlp-team-issai/setfit-me5-large-instruct-v3

Finetuned
(61)
this model

Evaluation results