|
---
|
|
base_model: sentence-transformers/all-mpnet-base-v2
|
|
datasets: []
|
|
language: []
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- pearson_cosine
|
|
- spearman_cosine
|
|
- pearson_manhattan
|
|
- spearman_manhattan
|
|
- pearson_euclidean
|
|
- spearman_euclidean
|
|
- pearson_dot
|
|
- spearman_dot
|
|
- pearson_max
|
|
- spearman_max
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:13063
|
|
- loss:CosineSimilarityLoss
|
|
widget:
|
|
- source_sentence: I cant wait to leave Chicago
|
|
sentences:
|
|
- This is the shit Chicago needs to be recognized for not Keef
|
|
- is candice singing again tonight
|
|
- half time Chelsea were losing 10
|
|
- source_sentence: Andre miller best lobbing pg in the game
|
|
sentences:
|
|
- Am I the only one who dont get Amber alert
|
|
- Backstrom hurt in warmup Harding could start
|
|
- Andre miller is even slower in person
|
|
- source_sentence: Bayless couldve dunked that from the free throw
|
|
sentences:
|
|
- but what great finger roll by Bayless
|
|
- Wow Bayless has to make EspnSCTop with that end of 3rd
|
|
- i mean calum u didnt follow
|
|
- source_sentence: Backstrom Hurt in warmups Harding gets the start
|
|
sentences:
|
|
- Should I go to Nashville or Chicago for my 17th birthday
|
|
- I hate Chelsea possibly more than most
|
|
- Of course Backstrom would get injured during warmups
|
|
- source_sentence: Calum I love you plz follow me
|
|
sentences:
|
|
- CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME
|
|
- Walking around downtown Chicago in a dress and listening to the new Iggy Pop
|
|
- I think Candice has what it takes to win American Idol AND Angie too
|
|
model-index:
|
|
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
|
results:
|
|
- task:
|
|
type: semantic-similarity
|
|
name: Semantic Similarity
|
|
dataset:
|
|
name: Unknown
|
|
type: unknown
|
|
metrics:
|
|
- type: pearson_cosine
|
|
value: 0.6949485250178733
|
|
name: Pearson Cosine
|
|
- type: spearman_cosine
|
|
value: 0.6626359968437283
|
|
name: Spearman Cosine
|
|
- type: pearson_manhattan
|
|
value: 0.688092975176289
|
|
name: Pearson Manhattan
|
|
- type: spearman_manhattan
|
|
value: 0.6630998028133662
|
|
name: Spearman Manhattan
|
|
- type: pearson_euclidean
|
|
value: 0.6880277270034267
|
|
name: Pearson Euclidean
|
|
- type: spearman_euclidean
|
|
value: 0.6626358741747785
|
|
name: Spearman Euclidean
|
|
- type: pearson_dot
|
|
value: 0.694948520847878
|
|
name: Pearson Dot
|
|
- type: spearman_dot
|
|
value: 0.6626359082695851
|
|
name: Spearman Dot
|
|
- type: pearson_max
|
|
value: 0.6949485250178733
|
|
name: Pearson Max
|
|
- type: spearman_max
|
|
value: 0.6630998028133662
|
|
name: Spearman Max
|
|
---
|
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
|
|
- **Maximum Sequence Length:** 384 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("mspy/twitter-paraphrase-embeddings")
|
|
# Run inference
|
|
sentences = [
|
|
'Calum I love you plz follow me',
|
|
'CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME',
|
|
'Walking around downtown Chicago in a dress and listening to the new Iggy Pop',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Semantic Similarity
|
|
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
|
|
|
| Metric | Value |
|
|
|:--------------------|:-----------|
|
|
| pearson_cosine | 0.6949 |
|
|
| **spearman_cosine** | **0.6626** |
|
|
| pearson_manhattan | 0.6881 |
|
|
| spearman_manhattan | 0.6631 |
|
|
| pearson_euclidean | 0.688 |
|
|
| spearman_euclidean | 0.6626 |
|
|
| pearson_dot | 0.6949 |
|
|
| spearman_dot | 0.6626 |
|
|
| pearson_max | 0.6949 |
|
|
| spearman_max | 0.6631 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 13,063 training samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | label |
|
|
|:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
|
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code> | <code>1.0</code> |
|
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> |
|
|
| <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code> | <code>0.6</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 4,727 evaluation samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
|
| type | string | string | float |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | label |
|
|
|:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------|
|
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> |
|
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code> | <code>0.6</code> |
|
|
| <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code> | <code>0.2</code> |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
|
```json
|
|
{
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `gradient_accumulation_steps`: 2
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 4
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 8
|
|
- `per_device_eval_batch_size`: 8
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 2
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 4
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `eval_use_gather_object`: False
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | loss | spearman_cosine |
|
|
|:------:|:----:|:-------------:|:------:|:---------------:|
|
|
| 0.1225 | 100 | - | 0.0729 | 0.6058 |
|
|
| 0.2449 | 200 | - | 0.0646 | 0.6340 |
|
|
| 0.3674 | 300 | - | 0.0627 | 0.6397 |
|
|
| 0.4899 | 400 | - | 0.0621 | 0.6472 |
|
|
| 0.6124 | 500 | 0.0627 | 0.0626 | 0.6496 |
|
|
| 0.7348 | 600 | - | 0.0621 | 0.6446 |
|
|
| 0.8573 | 700 | - | 0.0593 | 0.6695 |
|
|
| 0.9798 | 800 | - | 0.0636 | 0.6440 |
|
|
| 1.1023 | 900 | - | 0.0618 | 0.6525 |
|
|
| 1.2247 | 1000 | 0.0383 | 0.0604 | 0.6639 |
|
|
| 1.3472 | 1100 | - | 0.0608 | 0.6590 |
|
|
| 1.4697 | 1200 | - | 0.0620 | 0.6504 |
|
|
| 1.5922 | 1300 | - | 0.0617 | 0.6467 |
|
|
| 1.7146 | 1400 | - | 0.0615 | 0.6574 |
|
|
| 1.8371 | 1500 | 0.0293 | 0.0622 | 0.6536 |
|
|
| 1.9596 | 1600 | - | 0.0609 | 0.6599 |
|
|
| 2.0821 | 1700 | - | 0.0605 | 0.6658 |
|
|
| 2.2045 | 1800 | - | 0.0615 | 0.6588 |
|
|
| 2.3270 | 1900 | - | 0.0615 | 0.6575 |
|
|
| 2.4495 | 2000 | 0.0215 | 0.0614 | 0.6598 |
|
|
| 2.5720 | 2100 | - | 0.0603 | 0.6681 |
|
|
| 2.6944 | 2200 | - | 0.0606 | 0.6669 |
|
|
| 2.8169 | 2300 | - | 0.0605 | 0.6642 |
|
|
| 2.9394 | 2400 | - | 0.0606 | 0.6630 |
|
|
| 3.0618 | 2500 | 0.018 | 0.0611 | 0.6616 |
|
|
| 3.1843 | 2600 | - | 0.0611 | 0.6619 |
|
|
| 3.3068 | 2700 | - | 0.0611 | 0.6608 |
|
|
| 3.4293 | 2800 | - | 0.0608 | 0.6632 |
|
|
| 3.5517 | 2900 | - | 0.0608 | 0.6623 |
|
|
| 3.6742 | 3000 | 0.014 | 0.0615 | 0.6596 |
|
|
| 3.7967 | 3100 | - | 0.0612 | 0.6616 |
|
|
| 3.9192 | 3200 | - | 0.0610 | 0.6626 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.14
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.43.3
|
|
- PyTorch: 2.4.0+cu121
|
|
- Accelerate: 0.33.0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |