SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mspy/twitter-paraphrase-embeddings")
# Run inference
sentences = [
'Calum I love you plz follow me',
'CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME',
'Walking around downtown Chicago in a dress and listening to the new Iggy Pop',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6949 |
spearman_cosine | 0.6626 |
pearson_manhattan | 0.6881 |
spearman_manhattan | 0.6631 |
pearson_euclidean | 0.688 |
spearman_euclidean | 0.6626 |
pearson_dot | 0.6949 |
spearman_dot | 0.6626 |
pearson_max | 0.6949 |
spearman_max | 0.6631 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 13,063 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 11.16 tokens
- max: 28 tokens
- min: 7 tokens
- mean: 12.31 tokens
- max: 22 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence1 sentence2 label EJ Manuel the 1st QB to go in this draft
But my bro from the 757 EJ Manuel is the 1st QB gone
1.0
EJ Manuel the 1st QB to go in this draft
Can believe EJ Manuel went as the 1st QB in the draft
1.0
EJ Manuel the 1st QB to go in this draft
EJ MANUEL IS THE 1ST QB what
0.6
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 4,727 evaluation samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 7 tokens
- mean: 10.04 tokens
- max: 16 tokens
- min: 7 tokens
- mean: 12.22 tokens
- max: 26 tokens
- min: 0.0
- mean: 0.33
- max: 1.0
- Samples:
sentence1 sentence2 label A Walk to Remember is the definition of true love
A Walk to Remember is on and Im in town and Im upset
0.2
A Walk to Remember is the definition of true love
A Walk to Remember is the cutest thing
0.6
A Walk to Remember is the definition of true love
A walk to remember is on ABC family youre welcome
0.2
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsgradient_accumulation_steps
: 2learning_rate
: 2e-05num_train_epochs
: 4warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | spearman_cosine |
---|---|---|---|---|
0.1225 | 100 | - | 0.0729 | 0.6058 |
0.2449 | 200 | - | 0.0646 | 0.6340 |
0.3674 | 300 | - | 0.0627 | 0.6397 |
0.4899 | 400 | - | 0.0621 | 0.6472 |
0.6124 | 500 | 0.0627 | 0.0626 | 0.6496 |
0.7348 | 600 | - | 0.0621 | 0.6446 |
0.8573 | 700 | - | 0.0593 | 0.6695 |
0.9798 | 800 | - | 0.0636 | 0.6440 |
1.1023 | 900 | - | 0.0618 | 0.6525 |
1.2247 | 1000 | 0.0383 | 0.0604 | 0.6639 |
1.3472 | 1100 | - | 0.0608 | 0.6590 |
1.4697 | 1200 | - | 0.0620 | 0.6504 |
1.5922 | 1300 | - | 0.0617 | 0.6467 |
1.7146 | 1400 | - | 0.0615 | 0.6574 |
1.8371 | 1500 | 0.0293 | 0.0622 | 0.6536 |
1.9596 | 1600 | - | 0.0609 | 0.6599 |
2.0821 | 1700 | - | 0.0605 | 0.6658 |
2.2045 | 1800 | - | 0.0615 | 0.6588 |
2.3270 | 1900 | - | 0.0615 | 0.6575 |
2.4495 | 2000 | 0.0215 | 0.0614 | 0.6598 |
2.5720 | 2100 | - | 0.0603 | 0.6681 |
2.6944 | 2200 | - | 0.0606 | 0.6669 |
2.8169 | 2300 | - | 0.0605 | 0.6642 |
2.9394 | 2400 | - | 0.0606 | 0.6630 |
3.0618 | 2500 | 0.018 | 0.0611 | 0.6616 |
3.1843 | 2600 | - | 0.0611 | 0.6619 |
3.3068 | 2700 | - | 0.0611 | 0.6608 |
3.4293 | 2800 | - | 0.0608 | 0.6632 |
3.5517 | 2900 | - | 0.0608 | 0.6623 |
3.6742 | 3000 | 0.014 | 0.0615 | 0.6596 |
3.7967 | 3100 | - | 0.0612 | 0.6616 |
3.9192 | 3200 | - | 0.0610 | 0.6626 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.43.3
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mspy/twitter-paraphrase-embeddings
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on Unknownself-reported0.695
- Spearman Cosine on Unknownself-reported0.663
- Pearson Manhattan on Unknownself-reported0.688
- Spearman Manhattan on Unknownself-reported0.663
- Pearson Euclidean on Unknownself-reported0.688
- Spearman Euclidean on Unknownself-reported0.663
- Pearson Dot on Unknownself-reported0.695
- Spearman Dot on Unknownself-reported0.663
- Pearson Max on Unknownself-reported0.695
- Spearman Max on Unknownself-reported0.663