File size: 18,447 Bytes
68207ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
---

base_model: sentence-transformers/all-mpnet-base-v2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:13063
- loss:CosineSimilarityLoss
widget:
- source_sentence: I cant wait to leave Chicago
  sentences:
  - This is the shit Chicago needs to be recognized for not Keef
  - is candice singing again tonight
  - half time Chelsea were losing 10
- source_sentence: Andre miller best lobbing pg in the game
  sentences:
  - Am I the only one who dont get Amber alert
  - Backstrom hurt in warmup Harding could start
  - Andre miller is even slower in person
- source_sentence: Bayless couldve dunked that from the free throw
  sentences:
  - but what great finger roll by Bayless
  - Wow Bayless has to make EspnSCTop with that end of 3rd
  - i mean calum u didnt follow
- source_sentence: Backstrom Hurt in warmups Harding gets the start
  sentences:
  - Should I go to Nashville or Chicago for my 17th birthday
  - I hate Chelsea possibly more than most
  - Of course Backstrom would get injured during warmups
- source_sentence: Calum I love you plz follow me
  sentences:
  - CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME
  - Walking around downtown Chicago in a dress and listening to the new Iggy Pop
  - I think Candice has what it takes to win American Idol AND Angie too
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.6949485250178733
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6626359968437283
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.688092975176289
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6630998028133662
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6880277270034267
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6626358741747785
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.694948520847878
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6626359082695851
      name: Spearman Dot
    - type: pearson_max
      value: 0.6949485250178733
      name: Pearson Max
    - type: spearman_max
      value: 0.6630998028133662
      name: Spearman Max
---


# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): Normalize()

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("mspy/twitter-paraphrase-embeddings")

# Run inference

sentences = [

    'Calum I love you plz follow me',

    'CALUM PLEASE BE MY FIRST CELEBRITY TO FOLLOW ME',

    'Walking around downtown Chicago in a dress and listening to the new Iggy Pop',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6949     |

| **spearman_cosine** | **0.6626** |

| pearson_manhattan   | 0.6881     |
| spearman_manhattan  | 0.6631     |

| pearson_euclidean   | 0.688      |
| spearman_euclidean  | 0.6626     |

| pearson_dot         | 0.6949     |
| spearman_dot        | 0.6626     |

| pearson_max         | 0.6949     |
| spearman_max        | 0.6631     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### Unnamed Dataset





* Size: 13,063 training samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | float                                                          |

  | details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |

* Samples:

  | sentence1                                             | sentence2                                                          | label            |

  |:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|

  | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code>  | <code>1.0</code> |

  | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> |

  | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code>                          | <code>0.6</code> |

* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:

  ```json

  {

      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```



### Evaluation Dataset



#### Unnamed Dataset





* Size: 4,727 evaluation samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | float                                                          |

  | details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |

* Samples:

  | sentence1                                                      | sentence2                                                         | label            |

  |:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------|

  | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> |

  | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code>               | <code>0.6</code> |

  | <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code>    | <code>0.2</code> |

* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:

  ```json

  {

      "loss_fct": "torch.nn.modules.loss.MSELoss"

  }

  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `gradient_accumulation_steps`: 2
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | spearman_cosine |

|:------:|:----:|:-------------:|:------:|:---------------:|

| 0.1225 | 100  | -             | 0.0729 | 0.6058          |

| 0.2449 | 200  | -             | 0.0646 | 0.6340          |

| 0.3674 | 300  | -             | 0.0627 | 0.6397          |

| 0.4899 | 400  | -             | 0.0621 | 0.6472          |

| 0.6124 | 500  | 0.0627        | 0.0626 | 0.6496          |

| 0.7348 | 600  | -             | 0.0621 | 0.6446          |

| 0.8573 | 700  | -             | 0.0593 | 0.6695          |

| 0.9798 | 800  | -             | 0.0636 | 0.6440          |

| 1.1023 | 900  | -             | 0.0618 | 0.6525          |

| 1.2247 | 1000 | 0.0383        | 0.0604 | 0.6639          |

| 1.3472 | 1100 | -             | 0.0608 | 0.6590          |

| 1.4697 | 1200 | -             | 0.0620 | 0.6504          |

| 1.5922 | 1300 | -             | 0.0617 | 0.6467          |

| 1.7146 | 1400 | -             | 0.0615 | 0.6574          |

| 1.8371 | 1500 | 0.0293        | 0.0622 | 0.6536          |

| 1.9596 | 1600 | -             | 0.0609 | 0.6599          |

| 2.0821 | 1700 | -             | 0.0605 | 0.6658          |

| 2.2045 | 1800 | -             | 0.0615 | 0.6588          |

| 2.3270 | 1900 | -             | 0.0615 | 0.6575          |

| 2.4495 | 2000 | 0.0215        | 0.0614 | 0.6598          |

| 2.5720 | 2100 | -             | 0.0603 | 0.6681          |

| 2.6944 | 2200 | -             | 0.0606 | 0.6669          |

| 2.8169 | 2300 | -             | 0.0605 | 0.6642          |

| 2.9394 | 2400 | -             | 0.0606 | 0.6630          |

| 3.0618 | 2500 | 0.018         | 0.0611 | 0.6616          |

| 3.1843 | 2600 | -             | 0.0611 | 0.6619          |

| 3.3068 | 2700 | -             | 0.0611 | 0.6608          |

| 3.4293 | 2800 | -             | 0.0608 | 0.6632          |

| 3.5517 | 2900 | -             | 0.0608 | 0.6623          |

| 3.6742 | 3000 | 0.014         | 0.0615 | 0.6596          |

| 3.7967 | 3100 | -             | 0.0612 | 0.6616          |

| 3.9192 | 3200 | -             | 0.0610 | 0.6626          |





### Framework Versions

- Python: 3.10.14

- Sentence Transformers: 3.0.1

- Transformers: 4.43.3

- PyTorch: 2.4.0+cu121

- Accelerate: 0.33.0

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->