moritzbur's picture
End of training
20463d9 verified
metadata
library_name: transformers
base_model: moritzbur/lilt-GottBERT-base
tags:
  - generated_from_trainer
datasets:
  - xfund
model-index:
  - name: lilt-GottBERT-base-xfund-de
    results: []

lilt-GottBERT-base-xfund-de

This model is a fine-tuned version of moritzbur/lilt-GottBERT-base on the xfund dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7402
  • Answer: {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085}
  • Header: {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58}
  • Question: {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726}
  • Overall Precision: 0.7859
  • Overall Recall: 0.8015
  • Overall F1: 0.7936
  • Overall Accuracy: 0.7255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0373 20.0 200 1.8211 {'precision': 0.7350565428109854, 'recall': 0.8387096774193549, 'f1': 0.7834696513129574, 'number': 1085} {'precision': 0.5135135135135135, 'recall': 0.3275862068965517, 'f1': 0.4, 'number': 58} {'precision': 0.7130102040816326, 'recall': 0.7699724517906336, 'f1': 0.7403973509933776, 'number': 726} 0.7227 0.7961 0.7576 0.7076
0.0345 40.0 400 2.1454 {'precision': 0.7412698412698413, 'recall': 0.8608294930875576, 'f1': 0.796588486140725, 'number': 1085} {'precision': 0.48148148148148145, 'recall': 0.4482758620689655, 'f1': 0.4642857142857143, 'number': 58} {'precision': 0.6554809843400448, 'recall': 0.8071625344352618, 'f1': 0.7234567901234568, 'number': 726} 0.7002 0.8272 0.7584 0.6866
0.0114 60.0 600 2.0185 {'precision': 0.8492723492723493, 'recall': 0.7529953917050691, 'f1': 0.7982413287738153, 'number': 1085} {'precision': 0.7857142857142857, 'recall': 0.3793103448275862, 'f1': 0.5116279069767441, 'number': 58} {'precision': 0.7317073170731707, 'recall': 0.7851239669421488, 'f1': 0.7574750830564784, 'number': 726} 0.7965 0.7539 0.7746 0.7294
0.0043 80.0 800 1.7402 {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085} {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58} {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726} 0.7859 0.8015 0.7936 0.7255
0.0013 100.0 1000 1.8975 {'precision': 0.8072727272727273, 'recall': 0.8184331797235023, 'f1': 0.8128146453089244, 'number': 1085} {'precision': 0.5, 'recall': 0.41379310344827586, 'f1': 0.4528301886792453, 'number': 58} {'precision': 0.7246022031823746, 'recall': 0.8154269972451791, 'f1': 0.7673363577446531, 'number': 726} 0.7654 0.8047 0.7846 0.7248
0.0009 120.0 1200 1.8875 {'precision': 0.8050314465408805, 'recall': 0.8258064516129032, 'f1': 0.8152866242038216, 'number': 1085} {'precision': 0.6666666666666666, 'recall': 0.3793103448275862, 'f1': 0.48351648351648346, 'number': 58} {'precision': 0.7094017094017094, 'recall': 0.800275482093664, 'f1': 0.7521035598705502, 'number': 726} 0.7628 0.8020 0.7820 0.7334
0.0003 140.0 1400 1.9918 {'precision': 0.8246575342465754, 'recall': 0.832258064516129, 'f1': 0.8284403669724771, 'number': 1085} {'precision': 0.4716981132075472, 'recall': 0.43103448275862066, 'f1': 0.45045045045045046, 'number': 58} {'precision': 0.7354430379746836, 'recall': 0.800275482093664, 'f1': 0.766490765171504, 'number': 726} 0.7786 0.8074 0.7928 0.7316
0.0003 160.0 1600 2.4537 {'precision': 0.7632850241545893, 'recall': 0.8737327188940092, 'f1': 0.8147829823807479, 'number': 1085} {'precision': 0.6857142857142857, 'recall': 0.41379310344827586, 'f1': 0.5161290322580646, 'number': 58} {'precision': 0.7536231884057971, 'recall': 0.7878787878787878, 'f1': 0.7703703703703704, 'number': 726} 0.7583 0.8261 0.7908 0.6903
0.0004 180.0 1800 2.1619 {'precision': 0.785593220338983, 'recall': 0.8543778801843318, 'f1': 0.8185430463576159, 'number': 1085} {'precision': 0.5641025641025641, 'recall': 0.3793103448275862, 'f1': 0.4536082474226804, 'number': 58} {'precision': 0.7718579234972678, 'recall': 0.778236914600551, 'f1': 0.7750342935528121, 'number': 726} 0.7760 0.8101 0.7927 0.7197
0.0003 200.0 2000 2.1507 {'precision': 0.7948051948051948, 'recall': 0.8460829493087557, 'f1': 0.8196428571428571, 'number': 1085} {'precision': 0.631578947368421, 'recall': 0.41379310344827586, 'f1': 0.5, 'number': 58} {'precision': 0.7438551099611902, 'recall': 0.7920110192837465, 'f1': 0.7671781187458305, 'number': 726} 0.7716 0.8117 0.7911 0.7207

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0