moritzbur commited on
Commit
20463d9
·
verified ·
1 Parent(s): 1ff4ce7

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [moritzbur/lilt-GottBERT-base](https://huggingface.co/moritzbur/lilt-GottBERT-base) on the xfund dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 2.0170
21
- - Answer: {'precision': 0.8059836808703535, 'recall': 0.8193548387096774, 'f1': 0.8126142595978061, 'number': 1085}
22
- - Header: {'precision': 0.6590909090909091, 'recall': 0.5, 'f1': 0.5686274509803921, 'number': 58}
23
- - Question: {'precision': 0.7037037037037037, 'recall': 0.837465564738292, 'f1': 0.7647798742138364, 'number': 726}
24
- - Overall Precision: 0.7588
25
- - Overall Recall: 0.8165
26
- - Overall F1: 0.7866
27
- - Overall Accuracy: 0.7433
28
 
29
  ## Model description
30
 
@@ -44,30 +44,29 @@ More information needed
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 5e-05
47
- - train_batch_size: 8
48
- - eval_batch_size: 8
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
- - training_steps: 2500
 
53
  - mixed_precision_training: Native AMP
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:--------:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 0.6294 | 10.5263 | 200 | 1.2270 | {'precision': 0.7253032928942807, 'recall': 0.7714285714285715, 'f1': 0.7476552032157213, 'number': 1085} | {'precision': 0.4117647058823529, 'recall': 0.4827586206896552, 'f1': 0.4444444444444445, 'number': 58} | {'precision': 0.6296728971962616, 'recall': 0.7424242424242424, 'f1': 0.6814159292035398, 'number': 726} | 0.6756 | 0.7512 | 0.7114 | 0.7180 |
60
- | 0.0376 | 21.0526 | 400 | 1.5753 | {'precision': 0.7734447539461468, 'recall': 0.7677419354838709, 'f1': 0.7705827937095282, 'number': 1085} | {'precision': 0.5, 'recall': 0.39655172413793105, 'f1': 0.4423076923076923, 'number': 58} | {'precision': 0.6336302895322939, 'recall': 0.7837465564738292, 'f1': 0.7007389162561576, 'number': 726} | 0.7051 | 0.7624 | 0.7326 | 0.7219 |
61
- | 0.0093 | 31.5789 | 600 | 1.7096 | {'precision': 0.8057971014492754, 'recall': 0.7686635944700461, 'f1': 0.7867924528301887, 'number': 1085} | {'precision': 0.4807692307692308, 'recall': 0.43103448275862066, 'f1': 0.45454545454545453, 'number': 58} | {'precision': 0.643702906350915, 'recall': 0.8236914600550964, 'f1': 0.7226586102719034, 'number': 726} | 0.7227 | 0.7796 | 0.7501 | 0.7347 |
62
- | 0.0063 | 42.1053 | 800 | 2.0163 | {'precision': 0.760705289672544, 'recall': 0.8350230414746543, 'f1': 0.7961335676625658, 'number': 1085} | {'precision': 0.55, 'recall': 0.3793103448275862, 'f1': 0.4489795918367347, 'number': 58} | {'precision': 0.698090692124105, 'recall': 0.8057851239669421, 'f1': 0.748081841432225, 'number': 726} | 0.7313 | 0.8095 | 0.7684 | 0.7047 |
63
- | 0.0041 | 52.6316 | 1000 | 1.7820 | {'precision': 0.773403324584427, 'recall': 0.8147465437788018, 'f1': 0.793536804308797, 'number': 1085} | {'precision': 0.627906976744186, 'recall': 0.46551724137931033, 'f1': 0.5346534653465347, 'number': 58} | {'precision': 0.6758544652701213, 'recall': 0.8443526170798898, 'f1': 0.7507654623392529, 'number': 726} | 0.7281 | 0.8154 | 0.7693 | 0.7344 |
64
- | 0.0023 | 63.1579 | 1200 | 1.9631 | {'precision': 0.8218390804597702, 'recall': 0.7907834101382488, 'f1': 0.8060122123062471, 'number': 1085} | {'precision': 0.6444444444444445, 'recall': 0.5, 'f1': 0.5631067961165049, 'number': 58} | {'precision': 0.6841491841491841, 'recall': 0.8085399449035813, 'f1': 0.7411616161616162, 'number': 726} | 0.7571 | 0.7887 | 0.7725 | 0.7379 |
65
- | 0.0016 | 73.6842 | 1400 | 1.8911 | {'precision': 0.7939282428702852, 'recall': 0.7953917050691244, 'f1': 0.794659300184162, 'number': 1085} | {'precision': 0.5909090909090909, 'recall': 0.4482758620689655, 'f1': 0.5098039215686274, 'number': 58} | {'precision': 0.6629834254143646, 'recall': 0.8264462809917356, 'f1': 0.7357449417535254, 'number': 726} | 0.7313 | 0.7967 | 0.7626 | 0.7442 |
66
- | 0.0012 | 84.2105 | 1600 | 1.9599 | {'precision': 0.8111954459203036, 'recall': 0.7880184331797235, 'f1': 0.7994389901823281, 'number': 1085} | {'precision': 0.6666666666666666, 'recall': 0.41379310344827586, 'f1': 0.5106382978723404, 'number': 58} | {'precision': 0.7020785219399538, 'recall': 0.837465564738292, 'f1': 0.7638190954773869, 'number': 726} | 0.7602 | 0.7956 | 0.7775 | 0.7356 |
67
- | 0.0006 | 94.7368 | 1800 | 2.1117 | {'precision': 0.8485772357723578, 'recall': 0.7695852534562212, 'f1': 0.8071532141130981, 'number': 1085} | {'precision': 0.6444444444444445, 'recall': 0.5, 'f1': 0.5631067961165049, 'number': 58} | {'precision': 0.7149817295980512, 'recall': 0.8085399449035813, 'f1': 0.7588881706528765, 'number': 726} | 0.7843 | 0.7764 | 0.7803 | 0.7377 |
68
- | 0.0006 | 105.2632 | 2000 | 2.0033 | {'precision': 0.8036866359447005, 'recall': 0.8036866359447005, 'f1': 0.8036866359447006, 'number': 1085} | {'precision': 0.6410256410256411, 'recall': 0.43103448275862066, 'f1': 0.5154639175257731, 'number': 58} | {'precision': 0.6780973451327433, 'recall': 0.8443526170798898, 'f1': 0.7521472392638038, 'number': 726} | 0.7446 | 0.8079 | 0.7750 | 0.7409 |
69
- | 0.0003 | 115.7895 | 2200 | 2.0170 | {'precision': 0.8059836808703535, 'recall': 0.8193548387096774, 'f1': 0.8126142595978061, 'number': 1085} | {'precision': 0.6590909090909091, 'recall': 0.5, 'f1': 0.5686274509803921, 'number': 58} | {'precision': 0.7037037037037037, 'recall': 0.837465564738292, 'f1': 0.7647798742138364, 'number': 726} | 0.7588 | 0.8165 | 0.7866 | 0.7433 |
70
- | 0.0003 | 126.3158 | 2400 | 2.0173 | {'precision': 0.8104761904761905, 'recall': 0.784331797235023, 'f1': 0.7971896955503512, 'number': 1085} | {'precision': 0.6363636363636364, 'recall': 0.4827586206896552, 'f1': 0.5490196078431373, 'number': 58} | {'precision': 0.7096018735362998, 'recall': 0.8347107438016529, 'f1': 0.7670886075949367, 'number': 726} | 0.7623 | 0.7945 | 0.7781 | 0.7393 |
71
 
72
 
73
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [moritzbur/lilt-GottBERT-base](https://huggingface.co/moritzbur/lilt-GottBERT-base) on the xfund dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 1.7402
21
+ - Answer: {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085}
22
+ - Header: {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58}
23
+ - Question: {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726}
24
+ - Overall Precision: 0.7859
25
+ - Overall Recall: 0.8015
26
+ - Overall F1: 0.7936
27
+ - Overall Accuracy: 0.7255
28
 
29
  ## Model description
30
 
 
44
 
45
  The following hyperparameters were used during training:
46
  - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
  - seed: 42
50
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
  - lr_scheduler_type: linear
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - training_steps: 2000
54
  - mixed_precision_training: Native AMP
55
 
56
  ### Training results
57
 
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 0.0373 | 20.0 | 200 | 1.8211 | {'precision': 0.7350565428109854, 'recall': 0.8387096774193549, 'f1': 0.7834696513129574, 'number': 1085} | {'precision': 0.5135135135135135, 'recall': 0.3275862068965517, 'f1': 0.4, 'number': 58} | {'precision': 0.7130102040816326, 'recall': 0.7699724517906336, 'f1': 0.7403973509933776, 'number': 726} | 0.7227 | 0.7961 | 0.7576 | 0.7076 |
61
+ | 0.0345 | 40.0 | 400 | 2.1454 | {'precision': 0.7412698412698413, 'recall': 0.8608294930875576, 'f1': 0.796588486140725, 'number': 1085} | {'precision': 0.48148148148148145, 'recall': 0.4482758620689655, 'f1': 0.4642857142857143, 'number': 58} | {'precision': 0.6554809843400448, 'recall': 0.8071625344352618, 'f1': 0.7234567901234568, 'number': 726} | 0.7002 | 0.8272 | 0.7584 | 0.6866 |
62
+ | 0.0114 | 60.0 | 600 | 2.0185 | {'precision': 0.8492723492723493, 'recall': 0.7529953917050691, 'f1': 0.7982413287738153, 'number': 1085} | {'precision': 0.7857142857142857, 'recall': 0.3793103448275862, 'f1': 0.5116279069767441, 'number': 58} | {'precision': 0.7317073170731707, 'recall': 0.7851239669421488, 'f1': 0.7574750830564784, 'number': 726} | 0.7965 | 0.7539 | 0.7746 | 0.7294 |
63
+ | 0.0043 | 80.0 | 800 | 1.7402 | {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085} | {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58} | {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726} | 0.7859 | 0.8015 | 0.7936 | 0.7255 |
64
+ | 0.0013 | 100.0 | 1000 | 1.8975 | {'precision': 0.8072727272727273, 'recall': 0.8184331797235023, 'f1': 0.8128146453089244, 'number': 1085} | {'precision': 0.5, 'recall': 0.41379310344827586, 'f1': 0.4528301886792453, 'number': 58} | {'precision': 0.7246022031823746, 'recall': 0.8154269972451791, 'f1': 0.7673363577446531, 'number': 726} | 0.7654 | 0.8047 | 0.7846 | 0.7248 |
65
+ | 0.0009 | 120.0 | 1200 | 1.8875 | {'precision': 0.8050314465408805, 'recall': 0.8258064516129032, 'f1': 0.8152866242038216, 'number': 1085} | {'precision': 0.6666666666666666, 'recall': 0.3793103448275862, 'f1': 0.48351648351648346, 'number': 58} | {'precision': 0.7094017094017094, 'recall': 0.800275482093664, 'f1': 0.7521035598705502, 'number': 726} | 0.7628 | 0.8020 | 0.7820 | 0.7334 |
66
+ | 0.0003 | 140.0 | 1400 | 1.9918 | {'precision': 0.8246575342465754, 'recall': 0.832258064516129, 'f1': 0.8284403669724771, 'number': 1085} | {'precision': 0.4716981132075472, 'recall': 0.43103448275862066, 'f1': 0.45045045045045046, 'number': 58} | {'precision': 0.7354430379746836, 'recall': 0.800275482093664, 'f1': 0.766490765171504, 'number': 726} | 0.7786 | 0.8074 | 0.7928 | 0.7316 |
67
+ | 0.0003 | 160.0 | 1600 | 2.4537 | {'precision': 0.7632850241545893, 'recall': 0.8737327188940092, 'f1': 0.8147829823807479, 'number': 1085} | {'precision': 0.6857142857142857, 'recall': 0.41379310344827586, 'f1': 0.5161290322580646, 'number': 58} | {'precision': 0.7536231884057971, 'recall': 0.7878787878787878, 'f1': 0.7703703703703704, 'number': 726} | 0.7583 | 0.8261 | 0.7908 | 0.6903 |
68
+ | 0.0004 | 180.0 | 1800 | 2.1619 | {'precision': 0.785593220338983, 'recall': 0.8543778801843318, 'f1': 0.8185430463576159, 'number': 1085} | {'precision': 0.5641025641025641, 'recall': 0.3793103448275862, 'f1': 0.4536082474226804, 'number': 58} | {'precision': 0.7718579234972678, 'recall': 0.778236914600551, 'f1': 0.7750342935528121, 'number': 726} | 0.7760 | 0.8101 | 0.7927 | 0.7197 |
69
+ | 0.0003 | 200.0 | 2000 | 2.1507 | {'precision': 0.7948051948051948, 'recall': 0.8460829493087557, 'f1': 0.8196428571428571, 'number': 1085} | {'precision': 0.631578947368421, 'recall': 0.41379310344827586, 'f1': 0.5, 'number': 58} | {'precision': 0.7438551099611902, 'recall': 0.7920110192837465, 'f1': 0.7671781187458305, 'number': 726} | 0.7716 | 0.8117 | 0.7911 | 0.7207 |
 
 
70
 
71
 
72
  ### Framework versions
logs/events.out.tfevents.1732498300.d522202133e6.30.5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b686c850bfe426995d1809f6c5872a791061a77413be071fa5502203111953d3
3
- size 11848
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ac6958864dadae325bc2f9701926ea5f227970d86c47ae96645e868faba80e
3
+ size 12917
logs/events.out.tfevents.1732500998.d522202133e6.30.6 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c228651936a1fe66c0aa7679c4ea6990e71fb56f3cbc31766fb67ab26522b5dc
3
+ size 592
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fd4a4954dbca90fb4278ff42eac6baba8595cc3342970e6c3b134f032c3b39e0
3
  size 526085132
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eece7cce835b87bd18a555f9df109225ae609d6039ab8cd9edf5dbaaefc7efae
3
  size 526085132
preprocessor_config.json CHANGED
@@ -8,7 +8,7 @@
8
  0.5,
9
  0.5
10
  ],
11
- "image_processor_type": "LayoutLMv3FeatureExtractor",
12
  "image_std": [
13
  0.5,
14
  0.5,
 
8
  0.5,
9
  0.5
10
  ],
11
+ "image_processor_type": "LayoutLMv3ImageProcessor",
12
  "image_std": [
13
  0.5,
14
  0.5,
tokenizer_config.json CHANGED
@@ -54,8 +54,10 @@
54
  "eos_token": "</s>",
55
  "errors": "replace",
56
  "mask_token": "<mask>",
 
57
  "model_max_length": 512,
58
  "only_label_first_subword": true,
 
59
  "pad_token": "<pad>",
60
  "pad_token_box": [
61
  0,
@@ -64,6 +66,8 @@
64
  0
65
  ],
66
  "pad_token_label": -100,
 
 
67
  "processor_class": "LayoutLMv3Processor",
68
  "sep_token": "</s>",
69
  "sep_token_box": [
@@ -72,7 +76,10 @@
72
  0,
73
  0
74
  ],
 
75
  "tokenizer_class": "LayoutLMv3Tokenizer",
76
  "trim_offsets": true,
 
 
77
  "unk_token": "<unk>"
78
  }
 
54
  "eos_token": "</s>",
55
  "errors": "replace",
56
  "mask_token": "<mask>",
57
+ "max_length": 512,
58
  "model_max_length": 512,
59
  "only_label_first_subword": true,
60
+ "pad_to_multiple_of": null,
61
  "pad_token": "<pad>",
62
  "pad_token_box": [
63
  0,
 
66
  0
67
  ],
68
  "pad_token_label": -100,
69
+ "pad_token_type_id": 0,
70
+ "padding_side": "right",
71
  "processor_class": "LayoutLMv3Processor",
72
  "sep_token": "</s>",
73
  "sep_token_box": [
 
76
  0,
77
  0
78
  ],
79
+ "stride": 0,
80
  "tokenizer_class": "LayoutLMv3Tokenizer",
81
  "trim_offsets": true,
82
+ "truncation_side": "right",
83
+ "truncation_strategy": "longest_first",
84
  "unk_token": "<unk>"
85
  }