File size: 7,047 Bytes
6110af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20463d9
 
 
 
 
 
 
 
6110af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20463d9
 
6110af8
 
 
20463d9
 
6110af8
 
 
 
20463d9
 
 
 
 
 
 
 
 
 
 
 
6110af8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
base_model: moritzbur/lilt-GottBERT-base
tags:
- generated_from_trainer
datasets:
- xfund
model-index:
- name: lilt-GottBERT-base-xfund-de
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-GottBERT-base-xfund-de

This model is a fine-tuned version of [moritzbur/lilt-GottBERT-base](https://huggingface.co/moritzbur/lilt-GottBERT-base) on the xfund dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7402
- Answer: {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085}
- Header: {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58}
- Question: {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726}
- Overall Precision: 0.7859
- Overall Recall: 0.8015
- Overall F1: 0.7936
- Overall Accuracy: 0.7255

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 2000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                    | Header                                                                                                    | Question                                                                                                 | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0373        | 20.0  | 200  | 1.8211          | {'precision': 0.7350565428109854, 'recall': 0.8387096774193549, 'f1': 0.7834696513129574, 'number': 1085} | {'precision': 0.5135135135135135, 'recall': 0.3275862068965517, 'f1': 0.4, 'number': 58}                  | {'precision': 0.7130102040816326, 'recall': 0.7699724517906336, 'f1': 0.7403973509933776, 'number': 726} | 0.7227            | 0.7961         | 0.7576     | 0.7076           |
| 0.0345        | 40.0  | 400  | 2.1454          | {'precision': 0.7412698412698413, 'recall': 0.8608294930875576, 'f1': 0.796588486140725, 'number': 1085}  | {'precision': 0.48148148148148145, 'recall': 0.4482758620689655, 'f1': 0.4642857142857143, 'number': 58}  | {'precision': 0.6554809843400448, 'recall': 0.8071625344352618, 'f1': 0.7234567901234568, 'number': 726} | 0.7002            | 0.8272         | 0.7584     | 0.6866           |
| 0.0114        | 60.0  | 600  | 2.0185          | {'precision': 0.8492723492723493, 'recall': 0.7529953917050691, 'f1': 0.7982413287738153, 'number': 1085} | {'precision': 0.7857142857142857, 'recall': 0.3793103448275862, 'f1': 0.5116279069767441, 'number': 58}   | {'precision': 0.7317073170731707, 'recall': 0.7851239669421488, 'f1': 0.7574750830564784, 'number': 726} | 0.7965            | 0.7539         | 0.7746     | 0.7294           |
| 0.0043        | 80.0  | 800  | 1.7402          | {'precision': 0.7931914893617021, 'recall': 0.8589861751152074, 'f1': 0.8247787610619469, 'number': 1085} | {'precision': 0.5581395348837209, 'recall': 0.41379310344827586, 'f1': 0.4752475247524752, 'number': 58}  | {'precision': 0.7877906976744186, 'recall': 0.7465564738292011, 'f1': 0.7666195190947666, 'number': 726} | 0.7859            | 0.8015         | 0.7936     | 0.7255           |
| 0.0013        | 100.0 | 1000 | 1.8975          | {'precision': 0.8072727272727273, 'recall': 0.8184331797235023, 'f1': 0.8128146453089244, 'number': 1085} | {'precision': 0.5, 'recall': 0.41379310344827586, 'f1': 0.4528301886792453, 'number': 58}                 | {'precision': 0.7246022031823746, 'recall': 0.8154269972451791, 'f1': 0.7673363577446531, 'number': 726} | 0.7654            | 0.8047         | 0.7846     | 0.7248           |
| 0.0009        | 120.0 | 1200 | 1.8875          | {'precision': 0.8050314465408805, 'recall': 0.8258064516129032, 'f1': 0.8152866242038216, 'number': 1085} | {'precision': 0.6666666666666666, 'recall': 0.3793103448275862, 'f1': 0.48351648351648346, 'number': 58}  | {'precision': 0.7094017094017094, 'recall': 0.800275482093664, 'f1': 0.7521035598705502, 'number': 726}  | 0.7628            | 0.8020         | 0.7820     | 0.7334           |
| 0.0003        | 140.0 | 1400 | 1.9918          | {'precision': 0.8246575342465754, 'recall': 0.832258064516129, 'f1': 0.8284403669724771, 'number': 1085}  | {'precision': 0.4716981132075472, 'recall': 0.43103448275862066, 'f1': 0.45045045045045046, 'number': 58} | {'precision': 0.7354430379746836, 'recall': 0.800275482093664, 'f1': 0.766490765171504, 'number': 726}   | 0.7786            | 0.8074         | 0.7928     | 0.7316           |
| 0.0003        | 160.0 | 1600 | 2.4537          | {'precision': 0.7632850241545893, 'recall': 0.8737327188940092, 'f1': 0.8147829823807479, 'number': 1085} | {'precision': 0.6857142857142857, 'recall': 0.41379310344827586, 'f1': 0.5161290322580646, 'number': 58}  | {'precision': 0.7536231884057971, 'recall': 0.7878787878787878, 'f1': 0.7703703703703704, 'number': 726} | 0.7583            | 0.8261         | 0.7908     | 0.6903           |
| 0.0004        | 180.0 | 1800 | 2.1619          | {'precision': 0.785593220338983, 'recall': 0.8543778801843318, 'f1': 0.8185430463576159, 'number': 1085}  | {'precision': 0.5641025641025641, 'recall': 0.3793103448275862, 'f1': 0.4536082474226804, 'number': 58}   | {'precision': 0.7718579234972678, 'recall': 0.778236914600551, 'f1': 0.7750342935528121, 'number': 726}  | 0.7760            | 0.8101         | 0.7927     | 0.7197           |
| 0.0003        | 200.0 | 2000 | 2.1507          | {'precision': 0.7948051948051948, 'recall': 0.8460829493087557, 'f1': 0.8196428571428571, 'number': 1085} | {'precision': 0.631578947368421, 'recall': 0.41379310344827586, 'f1': 0.5, 'number': 58}                  | {'precision': 0.7438551099611902, 'recall': 0.7920110192837465, 'f1': 0.7671781187458305, 'number': 726} | 0.7716            | 0.8117         | 0.7911     | 0.7207           |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0