master_cate_sl18 / README.md
mini1013's picture
Push model using huggingface_hub.
a61c578 verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Pyramex Goliath 보안경 프레임 렌즈 스포츠/레저>스쿼시>기타스쿼시용품
  - text: 베이퍼 130 라님  윌리 스포츠/레저>스쿼시>스쿼시라켓
  - text: HEAD 스파크  스쿼시  라켓 안경  2 파란색 스포츠/레저>스쿼시>기타스쿼시용품
  - text: 헤드 HEAD Spark Team Pack 2024 스포츠/레저>스쿼시>스쿼시라켓
  - text: 던롭 DunLop 스쿼시볼 경기용 낱개 1개입 스포츠/레저>스쿼시>기타스쿼시용품
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: mini1013/master_domain
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 1
            name: Accuracy

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • '헤드 HEAD 남성용 그리드 2 0 로우 라켓볼스쿼시 실내 코트 슈즈 자국이 정품보장 스포츠/레저>스쿼시>기타스쿼시용품'
  • '테크니화이버 초록줄 릴 200m TF 스쿼시스트링 20회작업분 TF-305 1 스포츠/레저>스쿼시>기타스쿼시용품'
  • 'MOTUZP 단일 도트 스쿼시 공 고무 고탄력 라켓 초보자 경쟁 훈련을위한 훈련 연습을위한 single dot 스포츠/레저>스쿼시>기타스쿼시용품'
2.0
  • '테크니화이버 Carboflex 125 X탑 언스트렁 스쿼시 라켓 138966103 스포츠/레저>스쿼시>스쿼시라켓'
  • 'Gearbox GB3K 170Q 라켓볼 라켓 3 58 그립 스포츠/레저>스쿼시>스쿼시라켓'
  • 'Tecnifibre 스쿼시 Carboflex 125S 라켓 SynGut 스트링 스포츠/레저>스쿼시>스쿼시라켓'
1.0
  • '던롭 PRO 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'
  • '브니엘 토너먼트 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'
  • '던롭 Pro 스쿼시볼 (유리 코트 전용구) 스포츠/레저>스쿼시>스쿼시공'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl18")
# Run inference
preds = model("베이퍼 130 라님 엘 윌리 스포츠/레저>스쿼시>스쿼시라켓")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 9.4626 18
Label Training Sample Count
0.0 70
1.0 7
2.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0345 1 0.4863 -
1.7241 50 0.2641 -
3.4483 100 0.018 -
5.1724 150 0.0 -
6.8966 200 0.0 -
8.6207 250 0.0 -
10.3448 300 0.0 -
12.0690 350 0.0 -
13.7931 400 0.0 -
15.5172 450 0.0 -
17.2414 500 0.0 -
18.9655 550 0.0 -
20.6897 600 0.0 -
22.4138 650 0.0 -
24.1379 700 0.0 -
25.8621 750 0.0 -
27.5862 800 0.0 -
29.3103 850 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}