|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: Pyramex Goliath 보안경 프레임 렌즈 스포츠/레저>스쿼시>기타스쿼시용품 |
|
- text: 베이퍼 130 라님 엘 윌리 스포츠/레저>스쿼시>스쿼시라켓 |
|
- text: HEAD 스파크 팀 스쿼시 팩 라켓 안경 공 2개 파란색 스포츠/레저>스쿼시>기타스쿼시용품 |
|
- text: 헤드 HEAD Spark Team Pack 2024 스포츠/레저>스쿼시>스쿼시라켓 |
|
- text: 던롭 DunLop 스쿼시볼 경기용 낱개 1개입 스포츠/레저>스쿼시>기타스쿼시용품 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 3 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0.0 | <ul><li>'헤드 HEAD 남성용 그리드 2 0 로우 라켓볼스쿼시 실내 코트 슈즈 자국이 정품보장 스포츠/레저>스쿼시>기타스쿼시용품'</li><li>'테크니화이버 초록줄 릴 200m TF 스쿼시스트링 20회작업분 TF-305 1 스포츠/레저>스쿼시>기타스쿼시용품'</li><li>'MOTUZP 단일 도트 스쿼시 공 고무 고탄력 라켓 초보자 경쟁 훈련을위한 훈련 연습을위한 single dot 스포츠/레저>스쿼시>기타스쿼시용품'</li></ul> | |
|
| 2.0 | <ul><li>'테크니화이버 Carboflex 125 X탑 언스트렁 스쿼시 라켓 138966103 스포츠/레저>스쿼시>스쿼시라켓'</li><li>'Gearbox GB3K 170Q 라켓볼 라켓 3 58 그립 스포츠/레저>스쿼시>스쿼시라켓'</li><li>'Tecnifibre 스쿼시 Carboflex 125S 라켓 SynGut 스트링 스포츠/레저>스쿼시>스쿼시라켓'</li></ul> | |
|
| 1.0 | <ul><li>'던롭 PRO 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'</li><li>'브니엘 토너먼트 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'</li><li>'던롭 Pro 스쿼시볼 (유리 코트 전용구) 스포츠/레저>스쿼시>스쿼시공'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_sl18") |
|
# Run inference |
|
preds = model("베이퍼 130 라님 엘 윌리 스포츠/레저>스쿼시>스쿼시라켓") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 4 | 9.4626 | 18 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 7 | |
|
| 2.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0345 | 1 | 0.4863 | - | |
|
| 1.7241 | 50 | 0.2641 | - | |
|
| 3.4483 | 100 | 0.018 | - | |
|
| 5.1724 | 150 | 0.0 | - | |
|
| 6.8966 | 200 | 0.0 | - | |
|
| 8.6207 | 250 | 0.0 | - | |
|
| 10.3448 | 300 | 0.0 | - | |
|
| 12.0690 | 350 | 0.0 | - | |
|
| 13.7931 | 400 | 0.0 | - | |
|
| 15.5172 | 450 | 0.0 | - | |
|
| 17.2414 | 500 | 0.0 | - | |
|
| 18.9655 | 550 | 0.0 | - | |
|
| 20.6897 | 600 | 0.0 | - | |
|
| 22.4138 | 650 | 0.0 | - | |
|
| 24.1379 | 700 | 0.0 | - | |
|
| 25.8621 | 750 | 0.0 | - | |
|
| 27.5862 | 800 | 0.0 | - | |
|
| 29.3103 | 850 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |