SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0.0
  • '헤드 HEAD 남성용 그리드 2 0 로우 라켓볼스쿼시 실내 코트 슈즈 자국이 정품보장 스포츠/레저>스쿼시>기타스쿼시용품'
  • '테크니화이버 초록줄 릴 200m TF 스쿼시스트링 20회작업분 TF-305 1 스포츠/레저>스쿼시>기타스쿼시용품'
  • 'MOTUZP 단일 도트 스쿼시 공 고무 고탄력 라켓 초보자 경쟁 훈련을위한 훈련 연습을위한 single dot 스포츠/레저>스쿼시>기타스쿼시용품'
2.0
  • '테크니화이버 Carboflex 125 X탑 언스트렁 스쿼시 라켓 138966103 스포츠/레저>스쿼시>스쿼시라켓'
  • 'Gearbox GB3K 170Q 라켓볼 라켓 3 58 그립 스포츠/레저>스쿼시>스쿼시라켓'
  • 'Tecnifibre 스쿼시 Carboflex 125S 라켓 SynGut 스트링 스포츠/레저>스쿼시>스쿼시라켓'
1.0
  • '던롭 PRO 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'
  • '브니엘 토너먼트 스쿼시볼 스포츠/레저>스쿼시>스쿼시공'
  • '던롭 Pro 스쿼시볼 (유리 코트 전용구) 스포츠/레저>스쿼시>스쿼시공'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_sl18")
# Run inference
preds = model("베이퍼 130 라님 엘 윌리 스포츠/레저>스쿼시>스쿼시라켓")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 9.4626 18
Label Training Sample Count
0.0 70
1.0 7
2.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0345 1 0.4863 -
1.7241 50 0.2641 -
3.4483 100 0.018 -
5.1724 150 0.0 -
6.8966 200 0.0 -
8.6207 250 0.0 -
10.3448 300 0.0 -
12.0690 350 0.0 -
13.7931 400 0.0 -
15.5172 450 0.0 -
17.2414 500 0.0 -
18.9655 550 0.0 -
20.6897 600 0.0 -
22.4138 650 0.0 -
24.1379 700 0.0 -
25.8621 750 0.0 -
27.5862 800 0.0 -
29.3103 850 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
971
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_sl18

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results