embedding_finetune / README.md
llmvetter's picture
Add new SentenceTransformer model.
b39bdaf verified
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3820
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: samsung ms23h3125ak/ms23h3125ak
sentences:
- Canon EOS M50 + 15-45mm IS STM
- Bosch KIV32X23GB Integrated
- Indesit DIF04B1 Integrated
- Samsung MS23H3125AK Black
- Samsung RB29FWRNDBC Black
- Hisense RQ560N4WC1
- Samsung UE32M5520
- Nikon CoolPix A10
- Hotpoint RPD10457JKK
- HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
- Indesit DFG15B1S Silver
- Samsung WW10M86DQOO
- Bosch SMV46MX00G Integrated
- LG 49SK8100PLA
- Nikon CoolPix W300
- AMD Ryzen 3 1300X 3.5GHz Box
- LG OLED65B8PLA
- Samsung Galaxy J5 SM-J530
- LG 65UK6500PLA
- Siemens WM14T391GB
- Apple iPhone SE 32GB
- source_sentence: lg oled65c8pla
sentences:
- Beko LCSM1545W White
- Bosch KAN90VI20G Stainless Steel
- Canon PowerShot SX60 HS
- Hotpoint WMAQF621P
- Apple iPhone 7 Plus 32GB
- Hotpoint FFU4DK Black
- Fujifilm Finepix XP130
- Bosch WAN24108GB
- LG OLED65E8PLA
- Intel Core i7-8700K 3.7GHz Box
- Fujifilm X-Pro2
- LG OLED65C8PLA
- Samsung UE55NU8000
- LG 49LK5900PLA
- Apple iPhone 8 64GB
- Samsung UE65NU7100
- AEG L6FBG942R
- AMD Ryzen 7 1700 3GHz Box
- Panasonic TX-49FX750B
- Bosch WKD28351GB
- Bosch GUD15A50GB Integrated
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
sentences:
- Apple iPhone SE 32GB
- Apple iPhone X 64GB
- LG 55SK9500PLA
- Sony Cyber-shot DSC-WX500
- Samsung Galaxy A5 SM-A520F
- Apple iPhone 8 Plus 64GB
- Indesit IWDD7123
- Bosch SMS67MW01G White
- Bosch KGV33XW30G White
- Samsung WW80K5413UW
- AMD Ryzen 3 1300X 3.5GHz Box
- Bosch WAW28750GB
- Samsung Galaxy S8+ 64GB
- Bosch KGN39VW35G White
- Intel Core i7-7700K 4.2GHz Box
- Hotpoint RZAAV22P White
- Samsung UE49NU8000
- HP AMD Opteron 6276 2.3GHz Upgrade Tray
- Praktica Luxmedia Z250
- Hotpoint HFC2B19SV White
- Hisense RB385N4EW1 White
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
sentences:
- Bosch KGN36HI32 Stainless Steel
- Bosch SMS24AW01G White
- Hotpoint WDAL8640P
- Doro 6050
- Samsung QE55Q7FN
- AMD Ryzen 3 1200 3.1GHz Box
- Samsung UE55NU7500
- Huawei Honor 10 128GB Dual SIM
- Sony Xperia L1
- Hotpoint FFU4DK Black
- Hoover DXOC 68C3B
- Sony Xperia XA1
- Nikon D7200 + 18-105mm VR
- HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
- Samsung UE49NU8000
- Panasonic Lumix DMC-FT30
- Hotpoint FDL 9640K UK
- Apple iPhone 6S Plus 128GB
- Nikon D5600 + AF-P 18-55mm VR
- HP AMD Opteron 6238 2.6GHz Upgrade Tray
- Apple iPhone SE 32GB
- source_sentence: lg 49uk6300plb/49uk6300plb
sentences:
- Bosch KIR24V20GB Integrated
- Bosch WAWH8660GB
- Intel Core i5-7600K 3.80GHz Box
- Sony Bravia KD-65AF8
- Samsung RL4362FBASL Stainless Steel
- Bosch SMI50C15GB Silver
- Apple iPhone XS Max 256GB
- Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
- Bosch KGN36VW35G White
- Samsung WW70K5410UW
- Samsung Galaxy J6
- LG 49UK6300PLB
- Doro Secure 580
- Sony Xperia XZ1 Compact
- Bosch SMV50C10GB Integrated
- Bosch KGN34VB35G Black
- Panasonic NN-E27JWMBPQ White
- Samsung WW10M86DQOA/EU
- LG 55SK9500PLA
- Samsung QE65Q8DN
- Canon EOS 80D
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Product Category Retrieval Test
type: Product-Category-Retrieval-Test
metrics:
- type: cosine_accuracy@1
value: 0.8085774058577406
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9476987447698745
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9644351464435147
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9769874476987448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8085774058577406
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3158995815899582
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19288702928870294
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09769874476987449
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8085774058577406
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9476987447698745
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9644351464435147
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9769874476987448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9041917131034228
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.879607906621505
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8805000617705705
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llmvetter/embedding_finetune")
# Run inference
sentences = [
'lg 49uk6300plb/49uk6300plb',
'LG 49UK6300PLB',
'Samsung Galaxy J6',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `Product-Category-Retrieval-Test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8086 |
| cosine_accuracy@3 | 0.9477 |
| cosine_accuracy@5 | 0.9644 |
| cosine_accuracy@10 | 0.977 |
| cosine_precision@1 | 0.8086 |
| cosine_precision@3 | 0.3159 |
| cosine_precision@5 | 0.1929 |
| cosine_precision@10 | 0.0977 |
| cosine_recall@1 | 0.8086 |
| cosine_recall@3 | 0.9477 |
| cosine_recall@5 | 0.9644 |
| cosine_recall@10 | 0.977 |
| **cosine_ndcg@10** | **0.9042** |
| cosine_mrr@10 | 0.8796 |
| cosine_map@100 | 0.8805 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,820 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, <code>sentence_7</code>, <code>sentence_8</code>, <code>sentence_9</code>, <code>sentence_10</code>, <code>sentence_11</code>, <code>sentence_12</code>, <code>sentence_13</code>, <code>sentence_14</code>, <code>sentence_15</code>, <code>sentence_16</code>, <code>sentence_17</code>, <code>sentence_18</code>, <code>sentence_19</code>, <code>sentence_20</code>, and <code>sentence_21</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.41 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.11 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.84 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.81 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.92 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.18 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.93 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.95 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.86 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|:---------------------------------------------------------------------|:----------------------------------------|:---------------------------------------------|:-------------------------------------|:-------------------------------------|:--------------------------------------|:----------------------------------------------|:----------------------------------|:---------------------------------|:----------------------------------------------|:-----------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------|:--------------------------------------------|:---------------------------------------------|:----------------------------------------|:-------------------------------------------------|:-------------------------------|:------------------------------------------|:---------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>sony kd49xf8505bu 49 4k ultra hd tv</code> | <code>Sony Bravia KD-49XF8505</code> | <code>Intel Core i7-8700K 3.7GHz Box</code> | <code>Bosch WAN24100GB</code> | <code>AMD FX-6300 3.5GHz Box</code> | <code>Bosch WIW28500GB</code> | <code>Bosch KGN36VL35G Stainless Steel</code> | <code>Indesit XWDE751480XS</code> | <code>CAT S41 Dual SIM</code> | <code>Sony Xperia XA1 Ultra 32GB</code> | <code>Samsung Galaxy J6</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN39VW35G White</code> | <code>Intel Core i5 7400 3.0GHz Box</code> | <code>Neff C17UR02N0B Stainless Steel</code> | <code>Samsung RR39M7340SA Silver</code> | <code>Samsung RB41J7255SR Stainless Steel</code> | <code>Hoover DXOC 68C3B</code> | <code>Canon PowerShot SX730 HS</code> | <code>Samsung RR39M7340BC Black</code> | <code>Praktica Luxmedia WP240</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> |
| <code>doro 8040 4g sim free mobile phone black</code> | <code>Doro 8040</code> | <code>Bosch HMT75M551 Stainless Steel</code> | <code>Bosch SMI50C15GB Silver</code> | <code>Samsung WW90K5413UX</code> | <code>Panasonic Lumix DMC-TZ70</code> | <code>Sony KD-49XF7073</code> | <code>Nikon CoolPix W100</code> | <code>Samsung WD90J6A10AW</code> | <code>Bosch CFA634GS1B Stainless Steel</code> | <code>HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray</code> | <code>Canon EOS 800D + 18-55mm IS STM</code> | <code>Samsung UE50NU7400</code> | <code>Apple iPhone 6S 128GB</code> | <code>Samsung RS52N3313SA/EU Graphite</code> | <code>Bosch WAW325H0GB</code> | <code>Sony Bravia KD-55AF8</code> | <code>Sony Alpha 6500</code> | <code>Doro 5030</code> | <code>LG GSL761WBXV Black</code> | <code>Bosch SMS67MW00G White</code> | <code>AEG L6FBG942R</code> |
| <code>fridgemaster muz4965 undercounter freezer white a rated</code> | <code>Fridgemaster MUZ4965 White</code> | <code>Samsung UE49NU7100</code> | <code>Nikon CoolPix A10</code> | <code>Samsung UE55NU7100</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN49XL30G Stainless Steel</code> | <code>Samsung UE49NU7500</code> | <code>LG 55UK6300PLB</code> | <code>Hoover DXOC 68C3B</code> | <code>Panasonic Lumix DMC-FZ2000</code> | <code>Panasonic Lumix DMC-TZ80</code> | <code>Bosch WKD28541GB</code> | <code>Apple iPhone 6 32GB</code> | <code>Sony Bravia KDL-32WE613</code> | <code>Lec TF50152W White</code> | <code>Bosch KGV36VW32G White</code> | <code>Bosch WAYH8790GB</code> | <code>Samsung RS68N8240B1/EU Black</code> | <code>Sony Xperia XZ1</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> | <code>Sharp R372WM White</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | Product-Category-Retrieval-Test_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------------------------------------------:|
| 1.0 | 120 | - | 0.7406 |
| 2.0 | 240 | - | 0.8437 |
| 3.0 | 360 | - | 0.8756 |
| 4.0 | 480 | - | 0.8875 |
| 4.1667 | 500 | 2.5302 | - |
| 5.0 | 600 | - | 0.8963 |
| 6.0 | 720 | - | 0.9015 |
| 7.0 | 840 | - | 0.9042 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->