Add new SentenceTransformer model.
Browse files- 0_SentenceTransformer/1_Pooling/config.json +10 -0
- 0_SentenceTransformer/README.md +177 -0
- 0_SentenceTransformer/config.json +24 -0
- 0_SentenceTransformer/config_sentence_transformers.json +10 -0
- 0_SentenceTransformer/model.safetensors +3 -0
- 0_SentenceTransformer/modules.json +20 -0
- 0_SentenceTransformer/sentence_bert_config.json +4 -0
- 0_SentenceTransformer/special_tokens_map.json +51 -0
- 0_SentenceTransformer/tokenizer.json +0 -0
- 0_SentenceTransformer/tokenizer_config.json +73 -0
- 0_SentenceTransformer/vocab.txt +0 -0
- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +555 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
0_SentenceTransformer/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
0_SentenceTransformer/README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- feature-extraction
|
8 |
+
- sentence-similarity
|
9 |
+
- transformers
|
10 |
+
datasets:
|
11 |
+
- s2orc
|
12 |
+
- flax-sentence-embeddings/stackexchange_xml
|
13 |
+
- ms_marco
|
14 |
+
- gooaq
|
15 |
+
- yahoo_answers_topics
|
16 |
+
- code_search_net
|
17 |
+
- search_qa
|
18 |
+
- eli5
|
19 |
+
- snli
|
20 |
+
- multi_nli
|
21 |
+
- wikihow
|
22 |
+
- natural_questions
|
23 |
+
- trivia_qa
|
24 |
+
- embedding-data/sentence-compression
|
25 |
+
- embedding-data/flickr30k-captions
|
26 |
+
- embedding-data/altlex
|
27 |
+
- embedding-data/simple-wiki
|
28 |
+
- embedding-data/QQP
|
29 |
+
- embedding-data/SPECTER
|
30 |
+
- embedding-data/PAQ_pairs
|
31 |
+
- embedding-data/WikiAnswers
|
32 |
+
pipeline_tag: sentence-similarity
|
33 |
+
---
|
34 |
+
|
35 |
+
|
36 |
+
# all-mpnet-base-v2
|
37 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
38 |
+
|
39 |
+
## Usage (Sentence-Transformers)
|
40 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
41 |
+
|
42 |
+
```
|
43 |
+
pip install -U sentence-transformers
|
44 |
+
```
|
45 |
+
|
46 |
+
Then you can use the model like this:
|
47 |
+
```python
|
48 |
+
from sentence_transformers import SentenceTransformer
|
49 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
50 |
+
|
51 |
+
model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
52 |
+
embeddings = model.encode(sentences)
|
53 |
+
print(embeddings)
|
54 |
+
```
|
55 |
+
|
56 |
+
## Usage (HuggingFace Transformers)
|
57 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
58 |
+
|
59 |
+
```python
|
60 |
+
from transformers import AutoTokenizer, AutoModel
|
61 |
+
import torch
|
62 |
+
import torch.nn.functional as F
|
63 |
+
|
64 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
65 |
+
def mean_pooling(model_output, attention_mask):
|
66 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
67 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
68 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
69 |
+
|
70 |
+
|
71 |
+
# Sentences we want sentence embeddings for
|
72 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
73 |
+
|
74 |
+
# Load model from HuggingFace Hub
|
75 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
76 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-mpnet-base-v2')
|
77 |
+
|
78 |
+
# Tokenize sentences
|
79 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
80 |
+
|
81 |
+
# Compute token embeddings
|
82 |
+
with torch.no_grad():
|
83 |
+
model_output = model(**encoded_input)
|
84 |
+
|
85 |
+
# Perform pooling
|
86 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
87 |
+
|
88 |
+
# Normalize embeddings
|
89 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
90 |
+
|
91 |
+
print("Sentence embeddings:")
|
92 |
+
print(sentence_embeddings)
|
93 |
+
```
|
94 |
+
|
95 |
+
## Evaluation Results
|
96 |
+
|
97 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/all-mpnet-base-v2)
|
98 |
+
|
99 |
+
------
|
100 |
+
|
101 |
+
## Background
|
102 |
+
|
103 |
+
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
104 |
+
contrastive learning objective. We used the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model and fine-tuned in on a
|
105 |
+
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
106 |
+
|
107 |
+
We developped this model during the
|
108 |
+
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
|
109 |
+
organized by Hugging Face. We developped this model as part of the project:
|
110 |
+
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
|
111 |
+
|
112 |
+
## Intended uses
|
113 |
+
|
114 |
+
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
|
115 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
116 |
+
|
117 |
+
By default, input text longer than 384 word pieces is truncated.
|
118 |
+
|
119 |
+
|
120 |
+
## Training procedure
|
121 |
+
|
122 |
+
### Pre-training
|
123 |
+
|
124 |
+
We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure.
|
125 |
+
|
126 |
+
### Fine-tuning
|
127 |
+
|
128 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
|
129 |
+
We then apply the cross entropy loss by comparing with true pairs.
|
130 |
+
|
131 |
+
#### Hyper parameters
|
132 |
+
|
133 |
+
We trained ou model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
|
134 |
+
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
135 |
+
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
136 |
+
|
137 |
+
#### Training data
|
138 |
+
|
139 |
+
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
|
140 |
+
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
|
141 |
+
|
142 |
+
|
143 |
+
| Dataset | Paper | Number of training tuples |
|
144 |
+
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
|
145 |
+
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
146 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
147 |
+
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
148 |
+
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
149 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
150 |
+
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
151 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
152 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
|
153 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
|
154 |
+
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
155 |
+
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
156 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
157 |
+
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
158 |
+
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
159 |
+
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
160 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
161 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
162 |
+
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
163 |
+
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
164 |
+
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
165 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
166 |
+
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
167 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
168 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
169 |
+
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
170 |
+
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
171 |
+
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
172 |
+
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
173 |
+
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
174 |
+
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
175 |
+
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
176 |
+
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
177 |
+
| **Total** | | **1,170,060,424** |
|
0_SentenceTransformer/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/models/0_SentenceTransformer",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.47.1",
|
23 |
+
"vocab_size": 30527
|
24 |
+
}
|
0_SentenceTransformer/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
0_SentenceTransformer/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0b3c8c717335c801abb15983036a6f1df4b6943fd6b93717969efd96d22eeec6
|
3 |
+
size 437967672
|
0_SentenceTransformer/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
0_SentenceTransformer/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 384,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
0_SentenceTransformer/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
0_SentenceTransformer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
0_SentenceTransformer/tokenizer_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"104": {
|
36 |
+
"content": "[UNK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"30526": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": true,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"bos_token": "<s>",
|
53 |
+
"clean_up_tokenization_spaces": false,
|
54 |
+
"cls_token": "<s>",
|
55 |
+
"do_lower_case": true,
|
56 |
+
"eos_token": "</s>",
|
57 |
+
"extra_special_tokens": {},
|
58 |
+
"mask_token": "<mask>",
|
59 |
+
"max_length": 128,
|
60 |
+
"model_max_length": 384,
|
61 |
+
"pad_to_multiple_of": null,
|
62 |
+
"pad_token": "<pad>",
|
63 |
+
"pad_token_type_id": 0,
|
64 |
+
"padding_side": "right",
|
65 |
+
"sep_token": "</s>",
|
66 |
+
"stride": 0,
|
67 |
+
"strip_accents": null,
|
68 |
+
"tokenize_chinese_chars": true,
|
69 |
+
"tokenizer_class": "MPNetTokenizer",
|
70 |
+
"truncation_side": "right",
|
71 |
+
"truncation_strategy": "longest_first",
|
72 |
+
"unk_token": "[UNK]"
|
73 |
+
}
|
0_SentenceTransformer/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 512, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fa702c3aa3d3e152ce2eb57d0904dd43c42ba0023efd2c8bb8447a17d6000ab
|
3 |
+
size 1575072
|
README.md
ADDED
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:3820
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
widget:
|
10 |
+
- source_sentence: samsung ms23h3125ak/ms23h3125ak
|
11 |
+
sentences:
|
12 |
+
- Canon EOS M50 + 15-45mm IS STM
|
13 |
+
- Bosch KIV32X23GB Integrated
|
14 |
+
- Indesit DIF04B1 Integrated
|
15 |
+
- Samsung MS23H3125AK Black
|
16 |
+
- Samsung RB29FWRNDBC Black
|
17 |
+
- Hisense RQ560N4WC1
|
18 |
+
- Samsung UE32M5520
|
19 |
+
- Nikon CoolPix A10
|
20 |
+
- Hotpoint RPD10457JKK
|
21 |
+
- HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
|
22 |
+
- Indesit DFG15B1S Silver
|
23 |
+
- Samsung WW10M86DQOO
|
24 |
+
- Bosch SMV46MX00G Integrated
|
25 |
+
- LG 49SK8100PLA
|
26 |
+
- Nikon CoolPix W300
|
27 |
+
- AMD Ryzen 3 1300X 3.5GHz Box
|
28 |
+
- LG OLED65B8PLA
|
29 |
+
- Samsung Galaxy J5 SM-J530
|
30 |
+
- LG 65UK6500PLA
|
31 |
+
- Siemens WM14T391GB
|
32 |
+
- Apple iPhone SE 32GB
|
33 |
+
- source_sentence: lg oled65c8pla
|
34 |
+
sentences:
|
35 |
+
- Beko LCSM1545W White
|
36 |
+
- Bosch KAN90VI20G Stainless Steel
|
37 |
+
- Canon PowerShot SX60 HS
|
38 |
+
- Hotpoint WMAQF621P
|
39 |
+
- Apple iPhone 7 Plus 32GB
|
40 |
+
- Hotpoint FFU4DK Black
|
41 |
+
- Fujifilm Finepix XP130
|
42 |
+
- Bosch WAN24108GB
|
43 |
+
- LG OLED65E8PLA
|
44 |
+
- Intel Core i7-8700K 3.7GHz Box
|
45 |
+
- Fujifilm X-Pro2
|
46 |
+
- LG OLED65C8PLA
|
47 |
+
- Samsung UE55NU8000
|
48 |
+
- LG 49LK5900PLA
|
49 |
+
- Apple iPhone 8 64GB
|
50 |
+
- Samsung UE65NU7100
|
51 |
+
- AEG L6FBG942R
|
52 |
+
- AMD Ryzen 7 1700 3GHz Box
|
53 |
+
- Panasonic TX-49FX750B
|
54 |
+
- Bosch WKD28351GB
|
55 |
+
- Bosch GUD15A50GB Integrated
|
56 |
+
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
|
57 |
+
sentences:
|
58 |
+
- Apple iPhone SE 32GB
|
59 |
+
- Apple iPhone X 64GB
|
60 |
+
- LG 55SK9500PLA
|
61 |
+
- Sony Cyber-shot DSC-WX500
|
62 |
+
- Samsung Galaxy A5 SM-A520F
|
63 |
+
- Apple iPhone 8 Plus 64GB
|
64 |
+
- Indesit IWDD7123
|
65 |
+
- Bosch SMS67MW01G White
|
66 |
+
- Bosch KGV33XW30G White
|
67 |
+
- Samsung WW80K5413UW
|
68 |
+
- AMD Ryzen 3 1300X 3.5GHz Box
|
69 |
+
- Bosch WAW28750GB
|
70 |
+
- Samsung Galaxy S8+ 64GB
|
71 |
+
- Bosch KGN39VW35G White
|
72 |
+
- Intel Core i7-7700K 4.2GHz Box
|
73 |
+
- Hotpoint RZAAV22P White
|
74 |
+
- Samsung UE49NU8000
|
75 |
+
- HP AMD Opteron 6276 2.3GHz Upgrade Tray
|
76 |
+
- Praktica Luxmedia Z250
|
77 |
+
- Hotpoint HFC2B19SV White
|
78 |
+
- Hisense RB385N4EW1 White
|
79 |
+
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
|
80 |
+
sentences:
|
81 |
+
- Bosch KGN36HI32 Stainless Steel
|
82 |
+
- Bosch SMS24AW01G White
|
83 |
+
- Hotpoint WDAL8640P
|
84 |
+
- Doro 6050
|
85 |
+
- Samsung QE55Q7FN
|
86 |
+
- AMD Ryzen 3 1200 3.1GHz Box
|
87 |
+
- Samsung UE55NU7500
|
88 |
+
- Huawei Honor 10 128GB Dual SIM
|
89 |
+
- Sony Xperia L1
|
90 |
+
- Hotpoint FFU4DK Black
|
91 |
+
- Hoover DXOC 68C3B
|
92 |
+
- Sony Xperia XA1
|
93 |
+
- Nikon D7200 + 18-105mm VR
|
94 |
+
- HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
|
95 |
+
- Samsung UE49NU8000
|
96 |
+
- Panasonic Lumix DMC-FT30
|
97 |
+
- Hotpoint FDL 9640K UK
|
98 |
+
- Apple iPhone 6S Plus 128GB
|
99 |
+
- Nikon D5600 + AF-P 18-55mm VR
|
100 |
+
- HP AMD Opteron 6238 2.6GHz Upgrade Tray
|
101 |
+
- Apple iPhone SE 32GB
|
102 |
+
- source_sentence: lg 49uk6300plb/49uk6300plb
|
103 |
+
sentences:
|
104 |
+
- Bosch KIR24V20GB Integrated
|
105 |
+
- Bosch WAWH8660GB
|
106 |
+
- Intel Core i5-7600K 3.80GHz Box
|
107 |
+
- Sony Bravia KD-65AF8
|
108 |
+
- Samsung RL4362FBASL Stainless Steel
|
109 |
+
- Bosch SMI50C15GB Silver
|
110 |
+
- Apple iPhone XS Max 256GB
|
111 |
+
- Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
|
112 |
+
- Bosch KGN36VW35G White
|
113 |
+
- Samsung WW70K5410UW
|
114 |
+
- Samsung Galaxy J6
|
115 |
+
- LG 49UK6300PLB
|
116 |
+
- Doro Secure 580
|
117 |
+
- Sony Xperia XZ1 Compact
|
118 |
+
- Bosch SMV50C10GB Integrated
|
119 |
+
- Bosch KGN34VB35G Black
|
120 |
+
- Panasonic NN-E27JWMBPQ White
|
121 |
+
- Samsung WW10M86DQOA/EU
|
122 |
+
- LG 55SK9500PLA
|
123 |
+
- Samsung QE65Q8DN
|
124 |
+
- Canon EOS 80D
|
125 |
+
pipeline_tag: sentence-similarity
|
126 |
+
library_name: sentence-transformers
|
127 |
+
metrics:
|
128 |
+
- cosine_accuracy@1
|
129 |
+
- cosine_accuracy@3
|
130 |
+
- cosine_accuracy@5
|
131 |
+
- cosine_accuracy@10
|
132 |
+
- cosine_precision@1
|
133 |
+
- cosine_precision@3
|
134 |
+
- cosine_precision@5
|
135 |
+
- cosine_precision@10
|
136 |
+
- cosine_recall@1
|
137 |
+
- cosine_recall@3
|
138 |
+
- cosine_recall@5
|
139 |
+
- cosine_recall@10
|
140 |
+
- cosine_ndcg@10
|
141 |
+
- cosine_mrr@10
|
142 |
+
- cosine_map@100
|
143 |
+
model-index:
|
144 |
+
- name: SentenceTransformer
|
145 |
+
results:
|
146 |
+
- task:
|
147 |
+
type: information-retrieval
|
148 |
+
name: Information Retrieval
|
149 |
+
dataset:
|
150 |
+
name: Product Category Retrieval Test
|
151 |
+
type: Product-Category-Retrieval-Test
|
152 |
+
metrics:
|
153 |
+
- type: cosine_accuracy@1
|
154 |
+
value: 0.8085774058577406
|
155 |
+
name: Cosine Accuracy@1
|
156 |
+
- type: cosine_accuracy@3
|
157 |
+
value: 0.9476987447698745
|
158 |
+
name: Cosine Accuracy@3
|
159 |
+
- type: cosine_accuracy@5
|
160 |
+
value: 0.9644351464435147
|
161 |
+
name: Cosine Accuracy@5
|
162 |
+
- type: cosine_accuracy@10
|
163 |
+
value: 0.9769874476987448
|
164 |
+
name: Cosine Accuracy@10
|
165 |
+
- type: cosine_precision@1
|
166 |
+
value: 0.8085774058577406
|
167 |
+
name: Cosine Precision@1
|
168 |
+
- type: cosine_precision@3
|
169 |
+
value: 0.3158995815899582
|
170 |
+
name: Cosine Precision@3
|
171 |
+
- type: cosine_precision@5
|
172 |
+
value: 0.19288702928870294
|
173 |
+
name: Cosine Precision@5
|
174 |
+
- type: cosine_precision@10
|
175 |
+
value: 0.09769874476987449
|
176 |
+
name: Cosine Precision@10
|
177 |
+
- type: cosine_recall@1
|
178 |
+
value: 0.8085774058577406
|
179 |
+
name: Cosine Recall@1
|
180 |
+
- type: cosine_recall@3
|
181 |
+
value: 0.9476987447698745
|
182 |
+
name: Cosine Recall@3
|
183 |
+
- type: cosine_recall@5
|
184 |
+
value: 0.9644351464435147
|
185 |
+
name: Cosine Recall@5
|
186 |
+
- type: cosine_recall@10
|
187 |
+
value: 0.9769874476987448
|
188 |
+
name: Cosine Recall@10
|
189 |
+
- type: cosine_ndcg@10
|
190 |
+
value: 0.9041917131034228
|
191 |
+
name: Cosine Ndcg@10
|
192 |
+
- type: cosine_mrr@10
|
193 |
+
value: 0.879607906621505
|
194 |
+
name: Cosine Mrr@10
|
195 |
+
- type: cosine_map@100
|
196 |
+
value: 0.8805000617705705
|
197 |
+
name: Cosine Map@100
|
198 |
+
---
|
199 |
+
|
200 |
+
# SentenceTransformer
|
201 |
+
|
202 |
+
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
203 |
+
|
204 |
+
## Model Details
|
205 |
+
|
206 |
+
### Model Description
|
207 |
+
- **Model Type:** Sentence Transformer
|
208 |
+
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
|
209 |
+
- **Maximum Sequence Length:** 384 tokens
|
210 |
+
- **Output Dimensionality:** 512 dimensions
|
211 |
+
- **Similarity Function:** Cosine Similarity
|
212 |
+
<!-- - **Training Dataset:** Unknown -->
|
213 |
+
<!-- - **Language:** Unknown -->
|
214 |
+
<!-- - **License:** Unknown -->
|
215 |
+
|
216 |
+
### Model Sources
|
217 |
+
|
218 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
219 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
220 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
221 |
+
|
222 |
+
### Full Model Architecture
|
223 |
+
|
224 |
+
```
|
225 |
+
SentenceTransformer(
|
226 |
+
(0): SentenceTransformer(
|
227 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
228 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
229 |
+
(2): Normalize()
|
230 |
+
)
|
231 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
232 |
+
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
233 |
+
)
|
234 |
+
```
|
235 |
+
|
236 |
+
## Usage
|
237 |
+
|
238 |
+
### Direct Usage (Sentence Transformers)
|
239 |
+
|
240 |
+
First install the Sentence Transformers library:
|
241 |
+
|
242 |
+
```bash
|
243 |
+
pip install -U sentence-transformers
|
244 |
+
```
|
245 |
+
|
246 |
+
Then you can load this model and run inference.
|
247 |
+
```python
|
248 |
+
from sentence_transformers import SentenceTransformer
|
249 |
+
|
250 |
+
# Download from the 🤗 Hub
|
251 |
+
model = SentenceTransformer("llmvetter/embedding_finetune")
|
252 |
+
# Run inference
|
253 |
+
sentences = [
|
254 |
+
'lg 49uk6300plb/49uk6300plb',
|
255 |
+
'LG 49UK6300PLB',
|
256 |
+
'Samsung Galaxy J6',
|
257 |
+
]
|
258 |
+
embeddings = model.encode(sentences)
|
259 |
+
print(embeddings.shape)
|
260 |
+
# [3, 512]
|
261 |
+
|
262 |
+
# Get the similarity scores for the embeddings
|
263 |
+
similarities = model.similarity(embeddings, embeddings)
|
264 |
+
print(similarities.shape)
|
265 |
+
# [3, 3]
|
266 |
+
```
|
267 |
+
|
268 |
+
<!--
|
269 |
+
### Direct Usage (Transformers)
|
270 |
+
|
271 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
272 |
+
|
273 |
+
</details>
|
274 |
+
-->
|
275 |
+
|
276 |
+
<!--
|
277 |
+
### Downstream Usage (Sentence Transformers)
|
278 |
+
|
279 |
+
You can finetune this model on your own dataset.
|
280 |
+
|
281 |
+
<details><summary>Click to expand</summary>
|
282 |
+
|
283 |
+
</details>
|
284 |
+
-->
|
285 |
+
|
286 |
+
<!--
|
287 |
+
### Out-of-Scope Use
|
288 |
+
|
289 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
290 |
+
-->
|
291 |
+
|
292 |
+
## Evaluation
|
293 |
+
|
294 |
+
### Metrics
|
295 |
+
|
296 |
+
#### Information Retrieval
|
297 |
+
|
298 |
+
* Dataset: `Product-Category-Retrieval-Test`
|
299 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
300 |
+
|
301 |
+
| Metric | Value |
|
302 |
+
|:--------------------|:-----------|
|
303 |
+
| cosine_accuracy@1 | 0.8086 |
|
304 |
+
| cosine_accuracy@3 | 0.9477 |
|
305 |
+
| cosine_accuracy@5 | 0.9644 |
|
306 |
+
| cosine_accuracy@10 | 0.977 |
|
307 |
+
| cosine_precision@1 | 0.8086 |
|
308 |
+
| cosine_precision@3 | 0.3159 |
|
309 |
+
| cosine_precision@5 | 0.1929 |
|
310 |
+
| cosine_precision@10 | 0.0977 |
|
311 |
+
| cosine_recall@1 | 0.8086 |
|
312 |
+
| cosine_recall@3 | 0.9477 |
|
313 |
+
| cosine_recall@5 | 0.9644 |
|
314 |
+
| cosine_recall@10 | 0.977 |
|
315 |
+
| **cosine_ndcg@10** | **0.9042** |
|
316 |
+
| cosine_mrr@10 | 0.8796 |
|
317 |
+
| cosine_map@100 | 0.8805 |
|
318 |
+
|
319 |
+
<!--
|
320 |
+
## Bias, Risks and Limitations
|
321 |
+
|
322 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
323 |
+
-->
|
324 |
+
|
325 |
+
<!--
|
326 |
+
### Recommendations
|
327 |
+
|
328 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
329 |
+
-->
|
330 |
+
|
331 |
+
## Training Details
|
332 |
+
|
333 |
+
### Training Dataset
|
334 |
+
|
335 |
+
#### Unnamed Dataset
|
336 |
+
|
337 |
+
|
338 |
+
* Size: 3,820 training samples
|
339 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, <code>sentence_7</code>, <code>sentence_8</code>, <code>sentence_9</code>, <code>sentence_10</code>, <code>sentence_11</code>, <code>sentence_12</code>, <code>sentence_13</code>, <code>sentence_14</code>, <code>sentence_15</code>, <code>sentence_16</code>, <code>sentence_17</code>, <code>sentence_18</code>, <code>sentence_19</code>, <code>sentence_20</code>, and <code>sentence_21</code>
|
340 |
+
* Approximate statistics based on the first 1000 samples:
|
341 |
+
| | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|
342 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
343 |
+
| type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string |
|
344 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 18.41 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.11 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.84 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.81 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.92 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.18 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.93 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.95 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.86 tokens</li><li>max: 30 tokens</li></ul> |
|
345 |
+
* Samples:
|
346 |
+
| sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|
347 |
+
|:---------------------------------------------------------------------|:----------------------------------------|:---------------------------------------------|:-------------------------------------|:-------------------------------------|:--------------------------------------|:----------------------------------------------|:----------------------------------|:---------------------------------|:----------------------------------------------|:-----------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------|:--------------------------------------------|:---------------------------------------------|:----------------------------------------|:-------------------------------------------------|:-------------------------------|:------------------------------------------|:---------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
|
348 |
+
| <code>sony kd49xf8505bu 49 4k ultra hd tv</code> | <code>Sony Bravia KD-49XF8505</code> | <code>Intel Core i7-8700K 3.7GHz Box</code> | <code>Bosch WAN24100GB</code> | <code>AMD FX-6300 3.5GHz Box</code> | <code>Bosch WIW28500GB</code> | <code>Bosch KGN36VL35G Stainless Steel</code> | <code>Indesit XWDE751480XS</code> | <code>CAT S41 Dual SIM</code> | <code>Sony Xperia XA1 Ultra 32GB</code> | <code>Samsung Galaxy J6</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN39VW35G White</code> | <code>Intel Core i5 7400 3.0GHz Box</code> | <code>Neff C17UR02N0B Stainless Steel</code> | <code>Samsung RR39M7340SA Silver</code> | <code>Samsung RB41J7255SR Stainless Steel</code> | <code>Hoover DXOC 68C3B</code> | <code>Canon PowerShot SX730 HS</code> | <code>Samsung RR39M7340BC Black</code> | <code>Praktica Luxmedia WP240</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> |
|
349 |
+
| <code>doro 8040 4g sim free mobile phone black</code> | <code>Doro 8040</code> | <code>Bosch HMT75M551 Stainless Steel</code> | <code>Bosch SMI50C15GB Silver</code> | <code>Samsung WW90K5413UX</code> | <code>Panasonic Lumix DMC-TZ70</code> | <code>Sony KD-49XF7073</code> | <code>Nikon CoolPix W100</code> | <code>Samsung WD90J6A10AW</code> | <code>Bosch CFA634GS1B Stainless Steel</code> | <code>HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray</code> | <code>Canon EOS 800D + 18-55mm IS STM</code> | <code>Samsung UE50NU7400</code> | <code>Apple iPhone 6S 128GB</code> | <code>Samsung RS52N3313SA/EU Graphite</code> | <code>Bosch WAW325H0GB</code> | <code>Sony Bravia KD-55AF8</code> | <code>Sony Alpha 6500</code> | <code>Doro 5030</code> | <code>LG GSL761WBXV Black</code> | <code>Bosch SMS67MW00G White</code> | <code>AEG L6FBG942R</code> |
|
350 |
+
| <code>fridgemaster muz4965 undercounter freezer white a rated</code> | <code>Fridgemaster MUZ4965 White</code> | <code>Samsung UE49NU7100</code> | <code>Nikon CoolPix A10</code> | <code>Samsung UE55NU7100</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN49XL30G Stainless Steel</code> | <code>Samsung UE49NU7500</code> | <code>LG 55UK6300PLB</code> | <code>Hoover DXOC 68C3B</code> | <code>Panasonic Lumix DMC-FZ2000</code> | <code>Panasonic Lumix DMC-TZ80</code> | <code>Bosch WKD28541GB</code> | <code>Apple iPhone 6 32GB</code> | <code>Sony Bravia KDL-32WE613</code> | <code>Lec TF50152W White</code> | <code>Bosch KGV36VW32G White</code> | <code>Bosch WAYH8790GB</code> | <code>Samsung RS68N8240B1/EU Black</code> | <code>Sony Xperia XZ1</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> | <code>Sharp R372WM White</code> |
|
351 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
352 |
+
```json
|
353 |
+
{
|
354 |
+
"scale": 20.0,
|
355 |
+
"similarity_fct": "cos_sim"
|
356 |
+
}
|
357 |
+
```
|
358 |
+
|
359 |
+
### Training Hyperparameters
|
360 |
+
#### Non-Default Hyperparameters
|
361 |
+
|
362 |
+
- `per_device_train_batch_size`: 32
|
363 |
+
- `per_device_eval_batch_size`: 32
|
364 |
+
- `num_train_epochs`: 8
|
365 |
+
- `multi_dataset_batch_sampler`: round_robin
|
366 |
+
|
367 |
+
#### All Hyperparameters
|
368 |
+
<details><summary>Click to expand</summary>
|
369 |
+
|
370 |
+
- `overwrite_output_dir`: False
|
371 |
+
- `do_predict`: False
|
372 |
+
- `eval_strategy`: no
|
373 |
+
- `prediction_loss_only`: True
|
374 |
+
- `per_device_train_batch_size`: 32
|
375 |
+
- `per_device_eval_batch_size`: 32
|
376 |
+
- `per_gpu_train_batch_size`: None
|
377 |
+
- `per_gpu_eval_batch_size`: None
|
378 |
+
- `gradient_accumulation_steps`: 1
|
379 |
+
- `eval_accumulation_steps`: None
|
380 |
+
- `torch_empty_cache_steps`: None
|
381 |
+
- `learning_rate`: 5e-05
|
382 |
+
- `weight_decay`: 0.0
|
383 |
+
- `adam_beta1`: 0.9
|
384 |
+
- `adam_beta2`: 0.999
|
385 |
+
- `adam_epsilon`: 1e-08
|
386 |
+
- `max_grad_norm`: 1
|
387 |
+
- `num_train_epochs`: 8
|
388 |
+
- `max_steps`: -1
|
389 |
+
- `lr_scheduler_type`: linear
|
390 |
+
- `lr_scheduler_kwargs`: {}
|
391 |
+
- `warmup_ratio`: 0.0
|
392 |
+
- `warmup_steps`: 0
|
393 |
+
- `log_level`: passive
|
394 |
+
- `log_level_replica`: warning
|
395 |
+
- `log_on_each_node`: True
|
396 |
+
- `logging_nan_inf_filter`: True
|
397 |
+
- `save_safetensors`: True
|
398 |
+
- `save_on_each_node`: False
|
399 |
+
- `save_only_model`: False
|
400 |
+
- `restore_callback_states_from_checkpoint`: False
|
401 |
+
- `no_cuda`: False
|
402 |
+
- `use_cpu`: False
|
403 |
+
- `use_mps_device`: False
|
404 |
+
- `seed`: 42
|
405 |
+
- `data_seed`: None
|
406 |
+
- `jit_mode_eval`: False
|
407 |
+
- `use_ipex`: False
|
408 |
+
- `bf16`: False
|
409 |
+
- `fp16`: False
|
410 |
+
- `fp16_opt_level`: O1
|
411 |
+
- `half_precision_backend`: auto
|
412 |
+
- `bf16_full_eval`: False
|
413 |
+
- `fp16_full_eval`: False
|
414 |
+
- `tf32`: None
|
415 |
+
- `local_rank`: 0
|
416 |
+
- `ddp_backend`: None
|
417 |
+
- `tpu_num_cores`: None
|
418 |
+
- `tpu_metrics_debug`: False
|
419 |
+
- `debug`: []
|
420 |
+
- `dataloader_drop_last`: False
|
421 |
+
- `dataloader_num_workers`: 0
|
422 |
+
- `dataloader_prefetch_factor`: None
|
423 |
+
- `past_index`: -1
|
424 |
+
- `disable_tqdm`: False
|
425 |
+
- `remove_unused_columns`: True
|
426 |
+
- `label_names`: None
|
427 |
+
- `load_best_model_at_end`: False
|
428 |
+
- `ignore_data_skip`: False
|
429 |
+
- `fsdp`: []
|
430 |
+
- `fsdp_min_num_params`: 0
|
431 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
432 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
433 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
434 |
+
- `deepspeed`: None
|
435 |
+
- `label_smoothing_factor`: 0.0
|
436 |
+
- `optim`: adamw_torch
|
437 |
+
- `optim_args`: None
|
438 |
+
- `adafactor`: False
|
439 |
+
- `group_by_length`: False
|
440 |
+
- `length_column_name`: length
|
441 |
+
- `ddp_find_unused_parameters`: None
|
442 |
+
- `ddp_bucket_cap_mb`: None
|
443 |
+
- `ddp_broadcast_buffers`: False
|
444 |
+
- `dataloader_pin_memory`: True
|
445 |
+
- `dataloader_persistent_workers`: False
|
446 |
+
- `skip_memory_metrics`: True
|
447 |
+
- `use_legacy_prediction_loop`: False
|
448 |
+
- `push_to_hub`: False
|
449 |
+
- `resume_from_checkpoint`: None
|
450 |
+
- `hub_model_id`: None
|
451 |
+
- `hub_strategy`: every_save
|
452 |
+
- `hub_private_repo`: None
|
453 |
+
- `hub_always_push`: False
|
454 |
+
- `gradient_checkpointing`: False
|
455 |
+
- `gradient_checkpointing_kwargs`: None
|
456 |
+
- `include_inputs_for_metrics`: False
|
457 |
+
- `include_for_metrics`: []
|
458 |
+
- `eval_do_concat_batches`: True
|
459 |
+
- `fp16_backend`: auto
|
460 |
+
- `push_to_hub_model_id`: None
|
461 |
+
- `push_to_hub_organization`: None
|
462 |
+
- `mp_parameters`:
|
463 |
+
- `auto_find_batch_size`: False
|
464 |
+
- `full_determinism`: False
|
465 |
+
- `torchdynamo`: None
|
466 |
+
- `ray_scope`: last
|
467 |
+
- `ddp_timeout`: 1800
|
468 |
+
- `torch_compile`: False
|
469 |
+
- `torch_compile_backend`: None
|
470 |
+
- `torch_compile_mode`: None
|
471 |
+
- `dispatch_batches`: None
|
472 |
+
- `split_batches`: None
|
473 |
+
- `include_tokens_per_second`: False
|
474 |
+
- `include_num_input_tokens_seen`: False
|
475 |
+
- `neftune_noise_alpha`: None
|
476 |
+
- `optim_target_modules`: None
|
477 |
+
- `batch_eval_metrics`: False
|
478 |
+
- `eval_on_start`: False
|
479 |
+
- `use_liger_kernel`: False
|
480 |
+
- `eval_use_gather_object`: False
|
481 |
+
- `average_tokens_across_devices`: False
|
482 |
+
- `prompts`: None
|
483 |
+
- `batch_sampler`: batch_sampler
|
484 |
+
- `multi_dataset_batch_sampler`: round_robin
|
485 |
+
|
486 |
+
</details>
|
487 |
+
|
488 |
+
### Training Logs
|
489 |
+
| Epoch | Step | Training Loss | Product-Category-Retrieval-Test_cosine_ndcg@10 |
|
490 |
+
|:------:|:----:|:-------------:|:----------------------------------------------:|
|
491 |
+
| 1.0 | 120 | - | 0.7406 |
|
492 |
+
| 2.0 | 240 | - | 0.8437 |
|
493 |
+
| 3.0 | 360 | - | 0.8756 |
|
494 |
+
| 4.0 | 480 | - | 0.8875 |
|
495 |
+
| 4.1667 | 500 | 2.5302 | - |
|
496 |
+
| 5.0 | 600 | - | 0.8963 |
|
497 |
+
| 6.0 | 720 | - | 0.9015 |
|
498 |
+
| 7.0 | 840 | - | 0.9042 |
|
499 |
+
|
500 |
+
|
501 |
+
### Framework Versions
|
502 |
+
- Python: 3.11.10
|
503 |
+
- Sentence Transformers: 3.3.1
|
504 |
+
- Transformers: 4.47.1
|
505 |
+
- PyTorch: 2.5.1+cu124
|
506 |
+
- Accelerate: 1.2.1
|
507 |
+
- Datasets: 3.2.0
|
508 |
+
- Tokenizers: 0.21.0
|
509 |
+
|
510 |
+
## Citation
|
511 |
+
|
512 |
+
### BibTeX
|
513 |
+
|
514 |
+
#### Sentence Transformers
|
515 |
+
```bibtex
|
516 |
+
@inproceedings{reimers-2019-sentence-bert,
|
517 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
518 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
519 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
520 |
+
month = "11",
|
521 |
+
year = "2019",
|
522 |
+
publisher = "Association for Computational Linguistics",
|
523 |
+
url = "https://arxiv.org/abs/1908.10084",
|
524 |
+
}
|
525 |
+
```
|
526 |
+
|
527 |
+
#### MultipleNegativesRankingLoss
|
528 |
+
```bibtex
|
529 |
+
@misc{henderson2017efficient,
|
530 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
531 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
532 |
+
year={2017},
|
533 |
+
eprint={1705.00652},
|
534 |
+
archivePrefix={arXiv},
|
535 |
+
primaryClass={cs.CL}
|
536 |
+
}
|
537 |
+
```
|
538 |
+
|
539 |
+
<!--
|
540 |
+
## Glossary
|
541 |
+
|
542 |
+
*Clearly define terms in order to be accessible across audiences.*
|
543 |
+
-->
|
544 |
+
|
545 |
+
<!--
|
546 |
+
## Model Card Authors
|
547 |
+
|
548 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
549 |
+
-->
|
550 |
+
|
551 |
+
<!--
|
552 |
+
## Model Card Contact
|
553 |
+
|
554 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
555 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.1",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "0_SentenceTransformer",
|
6 |
+
"type": "sentence_transformers.SentenceTransformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|