File size: 29,617 Bytes
b39bdaf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3820
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: samsung ms23h3125ak/ms23h3125ak
sentences:
- Canon EOS M50 + 15-45mm IS STM
- Bosch KIV32X23GB Integrated
- Indesit DIF04B1 Integrated
- Samsung MS23H3125AK Black
- Samsung RB29FWRNDBC Black
- Hisense RQ560N4WC1
- Samsung UE32M5520
- Nikon CoolPix A10
- Hotpoint RPD10457JKK
- HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
- Indesit DFG15B1S Silver
- Samsung WW10M86DQOO
- Bosch SMV46MX00G Integrated
- LG 49SK8100PLA
- Nikon CoolPix W300
- AMD Ryzen 3 1300X 3.5GHz Box
- LG OLED65B8PLA
- Samsung Galaxy J5 SM-J530
- LG 65UK6500PLA
- Siemens WM14T391GB
- Apple iPhone SE 32GB
- source_sentence: lg oled65c8pla
sentences:
- Beko LCSM1545W White
- Bosch KAN90VI20G Stainless Steel
- Canon PowerShot SX60 HS
- Hotpoint WMAQF621P
- Apple iPhone 7 Plus 32GB
- Hotpoint FFU4DK Black
- Fujifilm Finepix XP130
- Bosch WAN24108GB
- LG OLED65E8PLA
- Intel Core i7-8700K 3.7GHz Box
- Fujifilm X-Pro2
- LG OLED65C8PLA
- Samsung UE55NU8000
- LG 49LK5900PLA
- Apple iPhone 8 64GB
- Samsung UE65NU7100
- AEG L6FBG942R
- AMD Ryzen 7 1700 3GHz Box
- Panasonic TX-49FX750B
- Bosch WKD28351GB
- Bosch GUD15A50GB Integrated
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
sentences:
- Apple iPhone SE 32GB
- Apple iPhone X 64GB
- LG 55SK9500PLA
- Sony Cyber-shot DSC-WX500
- Samsung Galaxy A5 SM-A520F
- Apple iPhone 8 Plus 64GB
- Indesit IWDD7123
- Bosch SMS67MW01G White
- Bosch KGV33XW30G White
- Samsung WW80K5413UW
- AMD Ryzen 3 1300X 3.5GHz Box
- Bosch WAW28750GB
- Samsung Galaxy S8+ 64GB
- Bosch KGN39VW35G White
- Intel Core i7-7700K 4.2GHz Box
- Hotpoint RZAAV22P White
- Samsung UE49NU8000
- HP AMD Opteron 6276 2.3GHz Upgrade Tray
- Praktica Luxmedia Z250
- Hotpoint HFC2B19SV White
- Hisense RB385N4EW1 White
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
sentences:
- Bosch KGN36HI32 Stainless Steel
- Bosch SMS24AW01G White
- Hotpoint WDAL8640P
- Doro 6050
- Samsung QE55Q7FN
- AMD Ryzen 3 1200 3.1GHz Box
- Samsung UE55NU7500
- Huawei Honor 10 128GB Dual SIM
- Sony Xperia L1
- Hotpoint FFU4DK Black
- Hoover DXOC 68C3B
- Sony Xperia XA1
- Nikon D7200 + 18-105mm VR
- HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
- Samsung UE49NU8000
- Panasonic Lumix DMC-FT30
- Hotpoint FDL 9640K UK
- Apple iPhone 6S Plus 128GB
- Nikon D5600 + AF-P 18-55mm VR
- HP AMD Opteron 6238 2.6GHz Upgrade Tray
- Apple iPhone SE 32GB
- source_sentence: lg 49uk6300plb/49uk6300plb
sentences:
- Bosch KIR24V20GB Integrated
- Bosch WAWH8660GB
- Intel Core i5-7600K 3.80GHz Box
- Sony Bravia KD-65AF8
- Samsung RL4362FBASL Stainless Steel
- Bosch SMI50C15GB Silver
- Apple iPhone XS Max 256GB
- Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
- Bosch KGN36VW35G White
- Samsung WW70K5410UW
- Samsung Galaxy J6
- LG 49UK6300PLB
- Doro Secure 580
- Sony Xperia XZ1 Compact
- Bosch SMV50C10GB Integrated
- Bosch KGN34VB35G Black
- Panasonic NN-E27JWMBPQ White
- Samsung WW10M86DQOA/EU
- LG 55SK9500PLA
- Samsung QE65Q8DN
- Canon EOS 80D
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Product Category Retrieval Test
type: Product-Category-Retrieval-Test
metrics:
- type: cosine_accuracy@1
value: 0.8085774058577406
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9476987447698745
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9644351464435147
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9769874476987448
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8085774058577406
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3158995815899582
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19288702928870294
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09769874476987449
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8085774058577406
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9476987447698745
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9644351464435147
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9769874476987448
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9041917131034228
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.879607906621505
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8805000617705705
name: Cosine Map@100
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("llmvetter/embedding_finetune")
# Run inference
sentences = [
'lg 49uk6300plb/49uk6300plb',
'LG 49UK6300PLB',
'Samsung Galaxy J6',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `Product-Category-Retrieval-Test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8086 |
| cosine_accuracy@3 | 0.9477 |
| cosine_accuracy@5 | 0.9644 |
| cosine_accuracy@10 | 0.977 |
| cosine_precision@1 | 0.8086 |
| cosine_precision@3 | 0.3159 |
| cosine_precision@5 | 0.1929 |
| cosine_precision@10 | 0.0977 |
| cosine_recall@1 | 0.8086 |
| cosine_recall@3 | 0.9477 |
| cosine_recall@5 | 0.9644 |
| cosine_recall@10 | 0.977 |
| **cosine_ndcg@10** | **0.9042** |
| cosine_mrr@10 | 0.8796 |
| cosine_map@100 | 0.8805 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,820 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, <code>sentence_7</code>, <code>sentence_8</code>, <code>sentence_9</code>, <code>sentence_10</code>, <code>sentence_11</code>, <code>sentence_12</code>, <code>sentence_13</code>, <code>sentence_14</code>, <code>sentence_15</code>, <code>sentence_16</code>, <code>sentence_17</code>, <code>sentence_18</code>, <code>sentence_19</code>, <code>sentence_20</code>, and <code>sentence_21</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 18.41 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.11 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.84 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.81 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.92 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.18 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.93 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.95 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.86 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 | sentence_2 | sentence_3 | sentence_4 | sentence_5 | sentence_6 | sentence_7 | sentence_8 | sentence_9 | sentence_10 | sentence_11 | sentence_12 | sentence_13 | sentence_14 | sentence_15 | sentence_16 | sentence_17 | sentence_18 | sentence_19 | sentence_20 | sentence_21 |
|:---------------------------------------------------------------------|:----------------------------------------|:---------------------------------------------|:-------------------------------------|:-------------------------------------|:--------------------------------------|:----------------------------------------------|:----------------------------------|:---------------------------------|:----------------------------------------------|:-----------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------|:--------------------------------------------|:---------------------------------------------|:----------------------------------------|:-------------------------------------------------|:-------------------------------|:------------------------------------------|:---------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| <code>sony kd49xf8505bu 49 4k ultra hd tv</code> | <code>Sony Bravia KD-49XF8505</code> | <code>Intel Core i7-8700K 3.7GHz Box</code> | <code>Bosch WAN24100GB</code> | <code>AMD FX-6300 3.5GHz Box</code> | <code>Bosch WIW28500GB</code> | <code>Bosch KGN36VL35G Stainless Steel</code> | <code>Indesit XWDE751480XS</code> | <code>CAT S41 Dual SIM</code> | <code>Sony Xperia XA1 Ultra 32GB</code> | <code>Samsung Galaxy J6</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN39VW35G White</code> | <code>Intel Core i5 7400 3.0GHz Box</code> | <code>Neff C17UR02N0B Stainless Steel</code> | <code>Samsung RR39M7340SA Silver</code> | <code>Samsung RB41J7255SR Stainless Steel</code> | <code>Hoover DXOC 68C3B</code> | <code>Canon PowerShot SX730 HS</code> | <code>Samsung RR39M7340BC Black</code> | <code>Praktica Luxmedia WP240</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> |
| <code>doro 8040 4g sim free mobile phone black</code> | <code>Doro 8040</code> | <code>Bosch HMT75M551 Stainless Steel</code> | <code>Bosch SMI50C15GB Silver</code> | <code>Samsung WW90K5413UX</code> | <code>Panasonic Lumix DMC-TZ70</code> | <code>Sony KD-49XF7073</code> | <code>Nikon CoolPix W100</code> | <code>Samsung WD90J6A10AW</code> | <code>Bosch CFA634GS1B Stainless Steel</code> | <code>HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray</code> | <code>Canon EOS 800D + 18-55mm IS STM</code> | <code>Samsung UE50NU7400</code> | <code>Apple iPhone 6S 128GB</code> | <code>Samsung RS52N3313SA/EU Graphite</code> | <code>Bosch WAW325H0GB</code> | <code>Sony Bravia KD-55AF8</code> | <code>Sony Alpha 6500</code> | <code>Doro 5030</code> | <code>LG GSL761WBXV Black</code> | <code>Bosch SMS67MW00G White</code> | <code>AEG L6FBG942R</code> |
| <code>fridgemaster muz4965 undercounter freezer white a rated</code> | <code>Fridgemaster MUZ4965 White</code> | <code>Samsung UE49NU7100</code> | <code>Nikon CoolPix A10</code> | <code>Samsung UE55NU7100</code> | <code>Samsung QE55Q7FN</code> | <code>Bosch KGN49XL30G Stainless Steel</code> | <code>Samsung UE49NU7500</code> | <code>LG 55UK6300PLB</code> | <code>Hoover DXOC 68C3B</code> | <code>Panasonic Lumix DMC-FZ2000</code> | <code>Panasonic Lumix DMC-TZ80</code> | <code>Bosch WKD28541GB</code> | <code>Apple iPhone 6 32GB</code> | <code>Sony Bravia KDL-32WE613</code> | <code>Lec TF50152W White</code> | <code>Bosch KGV36VW32G White</code> | <code>Bosch WAYH8790GB</code> | <code>Samsung RS68N8240B1/EU Black</code> | <code>Sony Xperia XZ1</code> | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> | <code>Sharp R372WM White</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | Product-Category-Retrieval-Test_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------------------------------------------:|
| 1.0 | 120 | - | 0.7406 |
| 2.0 | 240 | - | 0.8437 |
| 3.0 | 360 | - | 0.8756 |
| 4.0 | 480 | - | 0.8875 |
| 4.1667 | 500 | 2.5302 | - |
| 5.0 | 600 | - | 0.8963 |
| 6.0 | 720 | - | 0.9015 |
| 7.0 | 840 | - | 0.9042 |
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |