File size: 29,617 Bytes
b39bdaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3820
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: samsung ms23h3125ak/ms23h3125ak
  sentences:
  - Canon EOS M50 + 15-45mm IS STM
  - Bosch KIV32X23GB Integrated
  - Indesit DIF04B1 Integrated
  - Samsung MS23H3125AK Black
  - Samsung RB29FWRNDBC Black
  - Hisense RQ560N4WC1
  - Samsung UE32M5520
  - Nikon CoolPix A10
  - Hotpoint RPD10457JKK
  - HP Intel Xeon X5670 2.93GHz Socket 1366 3200MHz bus Upgrade Tray
  - Indesit DFG15B1S Silver
  - Samsung WW10M86DQOO
  - Bosch SMV46MX00G Integrated
  - LG 49SK8100PLA
  - Nikon CoolPix W300
  - AMD Ryzen 3 1300X 3.5GHz  Box
  - LG OLED65B8PLA
  - Samsung Galaxy J5 SM-J530
  - LG 65UK6500PLA
  - Siemens WM14T391GB
  - Apple iPhone SE 32GB
- source_sentence: lg oled65c8pla
  sentences:
  - Beko LCSM1545W White
  - Bosch KAN90VI20G Stainless Steel
  - Canon PowerShot SX60 HS
  - Hotpoint WMAQF621P
  - Apple iPhone 7 Plus 32GB
  - Hotpoint FFU4DK Black
  - Fujifilm Finepix XP130
  - Bosch WAN24108GB
  - LG OLED65E8PLA
  - Intel Core i7-8700K 3.7GHz  Box
  - Fujifilm X-Pro2
  - LG OLED65C8PLA
  - Samsung UE55NU8000
  - LG 49LK5900PLA
  - Apple iPhone 8 64GB
  - Samsung UE65NU7100
  - AEG L6FBG942R
  - AMD Ryzen 7 1700 3GHz Box
  - Panasonic TX-49FX750B
  - Bosch WKD28351GB
  - Bosch GUD15A50GB Integrated
- source_sentence: 15.748 cm 6.2 2960 x 1440 samoled octa core 2.3ghz quad 1.7gh
  sentences:
  - Apple iPhone SE 32GB
  - Apple iPhone X 64GB
  - LG 55SK9500PLA
  - Sony Cyber-shot DSC-WX500
  - Samsung Galaxy A5 SM-A520F
  - Apple iPhone 8 Plus 64GB
  - Indesit IWDD7123
  - Bosch SMS67MW01G White
  - Bosch KGV33XW30G White
  - Samsung WW80K5413UW
  - AMD Ryzen 3 1300X 3.5GHz  Box
  - Bosch WAW28750GB
  - Samsung Galaxy S8+ 64GB
  - Bosch KGN39VW35G White
  - Intel Core i7-7700K 4.2GHz  Box
  - Hotpoint RZAAV22P White
  - Samsung UE49NU8000
  - HP AMD Opteron 6276 2.3GHz Upgrade Tray
  - Praktica Luxmedia Z250
  - Hotpoint HFC2B19SV White
  - Hisense RB385N4EW1 White
- source_sentence: boxed processor amd ryzen 3 1200 4 x 3.1 ghz quad
  sentences:
  - Bosch KGN36HI32 Stainless Steel
  - Bosch SMS24AW01G White
  - Hotpoint WDAL8640P
  - Doro 6050
  - Samsung QE55Q7FN
  - AMD Ryzen 3 1200 3.1GHz Box
  - Samsung UE55NU7500
  - Huawei Honor 10 128GB Dual SIM
  - Sony Xperia L1
  - Hotpoint FFU4DK Black
  - Hoover DXOC 68C3B
  - Sony Xperia XA1
  - Nikon D7200 + 18-105mm VR
  - HP Intel Xeon DP E5640 2.66GHz Socket 1366 1066MHz bus Upgrade Tray
  - Samsung UE49NU8000
  - Panasonic Lumix DMC-FT30
  - Hotpoint FDL 9640K UK
  - Apple iPhone 6S Plus 128GB
  - Nikon D5600 + AF-P 18-55mm VR
  - HP AMD Opteron 6238 2.6GHz Upgrade Tray
  - Apple iPhone SE 32GB
- source_sentence: lg 49uk6300plb/49uk6300plb
  sentences:
  - Bosch KIR24V20GB Integrated
  - Bosch WAWH8660GB
  - Intel Core i5-7600K 3.80GHz  Box
  - Sony Bravia KD-65AF8
  - Samsung RL4362FBASL Stainless Steel
  - Bosch SMI50C15GB Silver
  - Apple iPhone XS Max 256GB
  - Fujifilm X-T100 + XC 15-45/f3.5-5.6 OIS PZ
  - Bosch KGN36VW35G White
  - Samsung WW70K5410UW
  - Samsung Galaxy J6
  - LG 49UK6300PLB
  - Doro Secure 580
  - Sony Xperia XZ1 Compact
  - Bosch SMV50C10GB Integrated
  - Bosch KGN34VB35G Black
  - Panasonic NN-E27JWMBPQ White
  - Samsung WW10M86DQOA/EU
  - LG 55SK9500PLA
  - Samsung QE65Q8DN
  - Canon EOS 80D
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Product Category Retrieval Test
      type: Product-Category-Retrieval-Test
    metrics:
    - type: cosine_accuracy@1
      value: 0.8085774058577406
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9476987447698745
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9644351464435147
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9769874476987448
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8085774058577406
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.3158995815899582
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.19288702928870294
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09769874476987449
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8085774058577406
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9476987447698745
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9644351464435147
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9769874476987448
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9041917131034228
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.879607906621505
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8805000617705705
      name: Cosine Map@100
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): SentenceTransformer(
    (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
    (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  )
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("llmvetter/embedding_finetune")
# Run inference
sentences = [
    'lg 49uk6300plb/49uk6300plb',
    'LG 49UK6300PLB',
    'Samsung Galaxy J6',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Dataset: `Product-Category-Retrieval-Test`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8086     |
| cosine_accuracy@3   | 0.9477     |
| cosine_accuracy@5   | 0.9644     |
| cosine_accuracy@10  | 0.977      |
| cosine_precision@1  | 0.8086     |
| cosine_precision@3  | 0.3159     |
| cosine_precision@5  | 0.1929     |
| cosine_precision@10 | 0.0977     |
| cosine_recall@1     | 0.8086     |
| cosine_recall@3     | 0.9477     |
| cosine_recall@5     | 0.9644     |
| cosine_recall@10    | 0.977      |
| **cosine_ndcg@10**  | **0.9042** |
| cosine_mrr@10       | 0.8796     |
| cosine_map@100      | 0.8805     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 3,820 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, <code>sentence_2</code>, <code>sentence_3</code>, <code>sentence_4</code>, <code>sentence_5</code>, <code>sentence_6</code>, <code>sentence_7</code>, <code>sentence_8</code>, <code>sentence_9</code>, <code>sentence_10</code>, <code>sentence_11</code>, <code>sentence_12</code>, <code>sentence_13</code>, <code>sentence_14</code>, <code>sentence_15</code>, <code>sentence_16</code>, <code>sentence_17</code>, <code>sentence_18</code>, <code>sentence_19</code>, <code>sentence_20</code>, and <code>sentence_21</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | sentence_2                                                                        | sentence_3                                                                        | sentence_4                                                                        | sentence_5                                                                        | sentence_6                                                                        | sentence_7                                                                        | sentence_8                                                                        | sentence_9                                                                        | sentence_10                                                                       | sentence_11                                                                       | sentence_12                                                                       | sentence_13                                                                       | sentence_14                                                                       | sentence_15                                                                       | sentence_16                                                                       | sentence_17                                                                       | sentence_18                                                                       | sentence_19                                                                       | sentence_20                                                                       | sentence_21                                                                       |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 4 tokens</li><li>mean: 18.41 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.94 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.11 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.15 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.84 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.82 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.81 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.92 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.18 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.07 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.93 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.04 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 11.02 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.95 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 10.86 tokens</li><li>max: 30 tokens</li></ul> |
* Samples:
  | sentence_0                                                           | sentence_1                              | sentence_2                                   | sentence_3                           | sentence_4                           | sentence_5                            | sentence_6                                    | sentence_7                        | sentence_8                       | sentence_9                                    | sentence_10                                                                  | sentence_11                                  | sentence_12                         | sentence_13                                 | sentence_14                                  | sentence_15                             | sentence_16                                      | sentence_17                    | sentence_18                               | sentence_19                            | sentence_20                                                                     | sentence_21                                                                     |
  |:---------------------------------------------------------------------|:----------------------------------------|:---------------------------------------------|:-------------------------------------|:-------------------------------------|:--------------------------------------|:----------------------------------------------|:----------------------------------|:---------------------------------|:----------------------------------------------|:-----------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------|:--------------------------------------------|:---------------------------------------------|:----------------------------------------|:-------------------------------------------------|:-------------------------------|:------------------------------------------|:---------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
  | <code>sony kd49xf8505bu 49 4k ultra hd tv</code>                     | <code>Sony Bravia KD-49XF8505</code>    | <code>Intel Core i7-8700K 3.7GHz  Box</code> | <code>Bosch WAN24100GB</code>        | <code>AMD FX-6300 3.5GHz  Box</code> | <code>Bosch WIW28500GB</code>         | <code>Bosch KGN36VL35G Stainless Steel</code> | <code>Indesit XWDE751480XS</code> | <code>CAT S41 Dual SIM</code>    | <code>Sony Xperia XA1 Ultra 32GB</code>       | <code>Samsung Galaxy J6</code>                                               | <code>Samsung QE55Q7FN</code>                | <code>Bosch KGN39VW35G White</code> | <code>Intel Core i5 7400 3.0GHz  Box</code> | <code>Neff C17UR02N0B Stainless Steel</code> | <code>Samsung RR39M7340SA Silver</code> | <code>Samsung RB41J7255SR Stainless Steel</code> | <code>Hoover DXOC 68C3B</code> | <code>Canon PowerShot SX730 HS</code>     | <code>Samsung RR39M7340BC Black</code> | <code>Praktica Luxmedia WP240</code>                                            | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> |
  | <code>doro 8040 4g sim free mobile phone black</code>                | <code>Doro 8040</code>                  | <code>Bosch HMT75M551 Stainless Steel</code> | <code>Bosch SMI50C15GB Silver</code> | <code>Samsung WW90K5413UX</code>     | <code>Panasonic Lumix DMC-TZ70</code> | <code>Sony KD-49XF7073</code>                 | <code>Nikon CoolPix W100</code>   | <code>Samsung WD90J6A10AW</code> | <code>Bosch CFA634GS1B Stainless Steel</code> | <code>HP AMD Opteron 8425 HE 2.1GHz Socket F 4800MHz bus Upgrade Tray</code> | <code>Canon EOS 800D + 18-55mm IS STM</code> | <code>Samsung UE50NU7400</code>     | <code>Apple iPhone 6S 128GB</code>          | <code>Samsung RS52N3313SA/EU Graphite</code> | <code>Bosch WAW325H0GB</code>           | <code>Sony Bravia KD-55AF8</code>                | <code>Sony Alpha 6500</code>   | <code>Doro 5030</code>                    | <code>LG GSL761WBXV Black</code>       | <code>Bosch SMS67MW00G White</code>                                             | <code>AEG L6FBG942R</code>                                                      |
  | <code>fridgemaster muz4965 undercounter freezer white a rated</code> | <code>Fridgemaster MUZ4965 White</code> | <code>Samsung UE49NU7100</code>              | <code>Nikon CoolPix A10</code>       | <code>Samsung UE55NU7100</code>      | <code>Samsung QE55Q7FN</code>         | <code>Bosch KGN49XL30G Stainless Steel</code> | <code>Samsung UE49NU7500</code>   | <code>LG 55UK6300PLB</code>      | <code>Hoover DXOC 68C3B</code>                | <code>Panasonic Lumix DMC-FZ2000</code>                                      | <code>Panasonic Lumix DMC-TZ80</code>        | <code>Bosch WKD28541GB</code>       | <code>Apple iPhone 6 32GB</code>            | <code>Sony Bravia KDL-32WE613</code>         | <code>Lec TF50152W White</code>         | <code>Bosch KGV36VW32G White</code>              | <code>Bosch WAYH8790GB</code>  | <code>Samsung RS68N8240B1/EU Black</code> | <code>Sony Xperia XZ1</code>           | <code>HP Intel Xeon DP E5506 2.13GHz Socket 1366 800MHz bus Upgrade Tray</code> | <code>Sharp R372WM White</code>                                                 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 8
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | Product-Category-Retrieval-Test_cosine_ndcg@10 |
|:------:|:----:|:-------------:|:----------------------------------------------:|
| 1.0    | 120  | -             | 0.7406                                         |
| 2.0    | 240  | -             | 0.8437                                         |
| 3.0    | 360  | -             | 0.8756                                         |
| 4.0    | 480  | -             | 0.8875                                         |
| 4.1667 | 500  | 2.5302        | -                                              |
| 5.0    | 600  | -             | 0.8963                                         |
| 6.0    | 720  | -             | 0.9015                                         |
| 7.0    | 840  | -             | 0.9042                                         |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->