metadata
library_name: transformers
license: mit
base_model: microsoft/Multilingual-MiniLM-L12-H384
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
results: []
m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5902
- Accuracy: 0.7441
- F1: 0.7577
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.6813 | 0.4444 | 20 | 0.6168 | 0.6903 | 0.7027 |
0.6418 | 0.8889 | 40 | 0.5810 | 0.7058 | 0.7058 |
0.5704 | 1.3333 | 60 | 0.5545 | 0.7205 | 0.6946 |
0.5575 | 1.7778 | 80 | 0.5344 | 0.7359 | 0.7457 |
0.5107 | 2.2222 | 100 | 0.5341 | 0.7498 | 0.7256 |
0.4649 | 2.6667 | 120 | 0.5298 | 0.7506 | 0.7528 |
0.4559 | 3.1111 | 140 | 0.5420 | 0.7522 | 0.7185 |
0.4031 | 3.5556 | 160 | 0.5952 | 0.7253 | 0.7524 |
0.3834 | 4.0 | 180 | 0.5535 | 0.7596 | 0.7476 |
0.3359 | 4.4444 | 200 | 0.5902 | 0.7441 | 0.7577 |
0.3423 | 4.8889 | 220 | 0.5629 | 0.7563 | 0.7498 |
0.2728 | 5.3333 | 240 | 0.5906 | 0.7588 | 0.7513 |
0.289 | 5.7778 | 260 | 0.6064 | 0.7555 | 0.7496 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3