livinNector
commited on
End of training
Browse files- README.md +75 -0
- config.json +27 -0
- model.safetensors +3 -0
- tam_mal_ai_aw_classification_adapter/adapter_config.json +21 -0
- tam_mal_ai_aw_classification_adapter/pytorch_adapter.bin +3 -0
- tam_mal_ai_aw_classification_head/head_config.json +21 -0
- tam_mal_ai_aw_classification_head/pytorch_model_head.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: microsoft/Multilingual-MiniLM-L12-H384
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5902
|
23 |
+
- Accuracy: 0.7441
|
24 |
+
- F1: 0.7577
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
+
- train_batch_size: 128
|
45 |
+
- eval_batch_size: 128
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 6
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 0.6813 | 0.4444 | 20 | 0.6168 | 0.6903 | 0.7027 |
|
56 |
+
| 0.6418 | 0.8889 | 40 | 0.5810 | 0.7058 | 0.7058 |
|
57 |
+
| 0.5704 | 1.3333 | 60 | 0.5545 | 0.7205 | 0.6946 |
|
58 |
+
| 0.5575 | 1.7778 | 80 | 0.5344 | 0.7359 | 0.7457 |
|
59 |
+
| 0.5107 | 2.2222 | 100 | 0.5341 | 0.7498 | 0.7256 |
|
60 |
+
| 0.4649 | 2.6667 | 120 | 0.5298 | 0.7506 | 0.7528 |
|
61 |
+
| 0.4559 | 3.1111 | 140 | 0.5420 | 0.7522 | 0.7185 |
|
62 |
+
| 0.4031 | 3.5556 | 160 | 0.5952 | 0.7253 | 0.7524 |
|
63 |
+
| 0.3834 | 4.0 | 180 | 0.5535 | 0.7596 | 0.7476 |
|
64 |
+
| 0.3359 | 4.4444 | 200 | 0.5902 | 0.7441 | 0.7577 |
|
65 |
+
| 0.3423 | 4.8889 | 220 | 0.5629 | 0.7563 | 0.7498 |
|
66 |
+
| 0.2728 | 5.3333 | 240 | 0.5906 | 0.7588 | 0.7513 |
|
67 |
+
| 0.289 | 5.7778 | 260 | 0.6064 | 0.7555 | 0.7496 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.45.2
|
73 |
+
- Pytorch 2.5.1+cu121
|
74 |
+
- Datasets 3.2.0
|
75 |
+
- Tokenizers 0.20.3
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/Multilingual-MiniLM-L12-H384",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.45.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250037
|
27 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01511a6e89ea33d7585e564bf220682b516ecdbc71b2624f47750b27eb956905
|
3 |
+
size 470641664
|
tam_mal_ai_aw_classification_adapter/adapter_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"architecture": "reft",
|
4 |
+
"dropout": 0.05,
|
5 |
+
"layers": "all",
|
6 |
+
"non_linearity": null,
|
7 |
+
"orthogonality": true,
|
8 |
+
"output_reft": true,
|
9 |
+
"prefix_positions": 3,
|
10 |
+
"r": 1,
|
11 |
+
"suffix_positions": 0,
|
12 |
+
"tied_weights": false
|
13 |
+
},
|
14 |
+
"config_id": "141e29e6c21f7261",
|
15 |
+
"hidden_size": 384,
|
16 |
+
"model_class": "BertAdapterModel",
|
17 |
+
"model_name": "microsoft/Multilingual-MiniLM-L12-H384",
|
18 |
+
"model_type": "bert",
|
19 |
+
"name": "tam_mal_ai_aw_classification_adapter",
|
20 |
+
"version": "adapters.1.0.1"
|
21 |
+
}
|
tam_mal_ai_aw_classification_adapter/pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bdf86f79a6bcce775e3b892b942fcc5cdc2babe31794ac1d2bb383654cfaef1
|
3 |
+
size 14269270
|
tam_mal_ai_aw_classification_head/head_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"bias": true,
|
5 |
+
"dropout_prob": null,
|
6 |
+
"head_type": "classification",
|
7 |
+
"label2id": {
|
8 |
+
"Abusive": 1,
|
9 |
+
"Non-Abusive": 0
|
10 |
+
},
|
11 |
+
"layers": 2,
|
12 |
+
"num_labels": 2,
|
13 |
+
"use_pooler": false
|
14 |
+
},
|
15 |
+
"hidden_size": 384,
|
16 |
+
"model_class": "BertAdapterModel",
|
17 |
+
"model_name": "microsoft/Multilingual-MiniLM-L12-H384",
|
18 |
+
"model_type": "bert",
|
19 |
+
"name": "tam_mal_ai_aw_classification_head",
|
20 |
+
"version": "adapters.1.0.1"
|
21 |
+
}
|
tam_mal_ai_aw_classification_head/pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:181eff46642ee9182bc0e90a75c404bbbd4739e0b73b589fd6e5fc5a2dcf60ac
|
3 |
+
size 596712
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b877ef47f17cf8f7d106413ede14183e5f1ea631a0b48b57136b5f3afe70910a
|
3 |
+
size 5304
|