livinNector commited on
Commit
fc176d9
·
verified ·
1 Parent(s): 207f5f2

End of training

Browse files
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: microsoft/Multilingual-MiniLM-L12-H384
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune
19
+
20
+ This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5902
23
+ - Accuracy: 0.7441
24
+ - F1: 0.7577
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 0.0001
44
+ - train_batch_size: 128
45
+ - eval_batch_size: 128
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 6
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
54
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
55
+ | 0.6813 | 0.4444 | 20 | 0.6168 | 0.6903 | 0.7027 |
56
+ | 0.6418 | 0.8889 | 40 | 0.5810 | 0.7058 | 0.7058 |
57
+ | 0.5704 | 1.3333 | 60 | 0.5545 | 0.7205 | 0.6946 |
58
+ | 0.5575 | 1.7778 | 80 | 0.5344 | 0.7359 | 0.7457 |
59
+ | 0.5107 | 2.2222 | 100 | 0.5341 | 0.7498 | 0.7256 |
60
+ | 0.4649 | 2.6667 | 120 | 0.5298 | 0.7506 | 0.7528 |
61
+ | 0.4559 | 3.1111 | 140 | 0.5420 | 0.7522 | 0.7185 |
62
+ | 0.4031 | 3.5556 | 160 | 0.5952 | 0.7253 | 0.7524 |
63
+ | 0.3834 | 4.0 | 180 | 0.5535 | 0.7596 | 0.7476 |
64
+ | 0.3359 | 4.4444 | 200 | 0.5902 | 0.7441 | 0.7577 |
65
+ | 0.3423 | 4.8889 | 220 | 0.5629 | 0.7563 | 0.7498 |
66
+ | 0.2728 | 5.3333 | 240 | 0.5906 | 0.7588 | 0.7513 |
67
+ | 0.289 | 5.7778 | 260 | 0.6064 | 0.7555 | 0.7496 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.45.2
73
+ - Pytorch 2.5.1+cu121
74
+ - Datasets 3.2.0
75
+ - Tokenizers 0.20.3
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/Multilingual-MiniLM-L12-H384",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 1536,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "problem_type": "single_label_classification",
21
+ "tokenizer_class": "XLMRobertaTokenizer",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.45.2",
24
+ "type_vocab_size": 2,
25
+ "use_cache": true,
26
+ "vocab_size": 250037
27
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01511a6e89ea33d7585e564bf220682b516ecdbc71b2624f47750b27eb956905
3
+ size 470641664
tam_mal_ai_aw_classification_adapter/adapter_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "architecture": "reft",
4
+ "dropout": 0.05,
5
+ "layers": "all",
6
+ "non_linearity": null,
7
+ "orthogonality": true,
8
+ "output_reft": true,
9
+ "prefix_positions": 3,
10
+ "r": 1,
11
+ "suffix_positions": 0,
12
+ "tied_weights": false
13
+ },
14
+ "config_id": "141e29e6c21f7261",
15
+ "hidden_size": 384,
16
+ "model_class": "BertAdapterModel",
17
+ "model_name": "microsoft/Multilingual-MiniLM-L12-H384",
18
+ "model_type": "bert",
19
+ "name": "tam_mal_ai_aw_classification_adapter",
20
+ "version": "adapters.1.0.1"
21
+ }
tam_mal_ai_aw_classification_adapter/pytorch_adapter.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bdf86f79a6bcce775e3b892b942fcc5cdc2babe31794ac1d2bb383654cfaef1
3
+ size 14269270
tam_mal_ai_aw_classification_head/head_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "config": {
3
+ "activation_function": "tanh",
4
+ "bias": true,
5
+ "dropout_prob": null,
6
+ "head_type": "classification",
7
+ "label2id": {
8
+ "Abusive": 1,
9
+ "Non-Abusive": 0
10
+ },
11
+ "layers": 2,
12
+ "num_labels": 2,
13
+ "use_pooler": false
14
+ },
15
+ "hidden_size": 384,
16
+ "model_class": "BertAdapterModel",
17
+ "model_name": "microsoft/Multilingual-MiniLM-L12-H384",
18
+ "model_type": "bert",
19
+ "name": "tam_mal_ai_aw_classification_head",
20
+ "version": "adapters.1.0.1"
21
+ }
tam_mal_ai_aw_classification_head/pytorch_model_head.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:181eff46642ee9182bc0e90a75c404bbbd4739e0b73b589fd6e5fc5a2dcf60ac
3
+ size 596712
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b877ef47f17cf8f7d106413ede14183e5f1ea631a0b48b57136b5f3afe70910a
3
+ size 5304