m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune

This model is a fine-tuned version of microsoft/Multilingual-MiniLM-L12-H384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5902
  • Accuracy: 0.7441
  • F1: 0.7577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.6813 0.4444 20 0.6168 0.6903 0.7027
0.6418 0.8889 40 0.5810 0.7058 0.7058
0.5704 1.3333 60 0.5545 0.7205 0.6946
0.5575 1.7778 80 0.5344 0.7359 0.7457
0.5107 2.2222 100 0.5341 0.7498 0.7256
0.4649 2.6667 120 0.5298 0.7506 0.7528
0.4559 3.1111 140 0.5420 0.7522 0.7185
0.4031 3.5556 160 0.5952 0.7253 0.7524
0.3834 4.0 180 0.5535 0.7596 0.7476
0.3359 4.4444 200 0.5902 0.7441 0.7577
0.3423 4.8889 220 0.5629 0.7563 0.7498
0.2728 5.3333 240 0.5906 0.7588 0.7513
0.289 5.7778 260 0.6064 0.7555 0.7496

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
30
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for livinNector/m-minilm-l12-h384-dra-tam-mal-aw-classification-finetune

Finetuned
(31)
this model