|
--- |
|
license: cc-by-nc-nd-4.0 |
|
language: |
|
- en |
|
library_name: transformers |
|
tags: |
|
- reward model |
|
- RLHF |
|
- medical |
|
--- |
|
|
|
# JSL-MedMNX-7B-SFT |
|
|
|
[<img src="https://repository-images.githubusercontent.com/104670986/2e728700-ace4-11ea-9cfc-f3e060b25ddf">](http://www.johnsnowlabs.com) |
|
|
|
JSL-MedMNX-7B-SFT is a 7 Billion parameter model developed by [John Snow Labs](https://www.johnsnowlabs.com/). |
|
|
|
This model is SFT-finetuned on alpaca format 11k medical dataset over the base model [JSL-MedMNX-7B](https://huggingface.co/johnsnowlabs/JSL-MedMNX-7B). Checkout the perofrmance on [Open Medical LLM Leaderboard](https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard). |
|
|
|
This model is available under a [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license and must also conform to this [Acceptable Use Policy](https://huggingface.co/johnsnowlabs). If you need to license this model for commercial use, please contact us at [email protected]. |
|
|
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "johnsnowlabs/JSL-MedMNX-7B-SFT" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
## 🏆 Evaluation |
|
|
|
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:| |
|
|stem |N/A |none | 0|acc_norm|0.5209|± |0.0068| |
|
| | |none | 0|acc |0.5675|± |0.0058| |
|
| - medmcqa |Yaml |none | 0|acc |0.5152|± |0.0077| |
|
| | |none | 0|acc_norm|0.5152|± |0.0077| |
|
| - medqa_4options |Yaml |none | 0|acc |0.5397|± |0.0140| |
|
| | |none | 0|acc_norm|0.5397|± |0.0140| |
|
| - anatomy (mmlu) | 0|none | 0|acc |0.6593|± |0.0409| |
|
| - clinical_knowledge (mmlu) | 0|none | 0|acc |0.7245|± |0.0275| |
|
| - college_biology (mmlu) | 0|none | 0|acc |0.7431|± |0.0365| |
|
| - college_medicine (mmlu) | 0|none | 0|acc |0.6532|± |0.0363| |
|
| - medical_genetics (mmlu) | 0|none | 0|acc |0.7300|± |0.0446| |
|
| - professional_medicine (mmlu)| 0|none | 0|acc |0.7206|± |0.0273| |
|
| - pubmedqa | 1|none | 0|acc |0.7720|± |0.0188| |
|
|
|
|Groups|Version|Filter|n-shot| Metric |Value | |Stderr| |
|
|------|-------|------|-----:|--------|-----:|---|-----:| |
|
|stem |N/A |none | 0|acc_norm|0.5209|± |0.0068| |
|
| | |none | 0|acc |0.5675|± |0.0058| |