File size: 3,169 Bytes
006bbc4
 
 
 
 
 
 
 
 
 
 
 
 
a87ede2
006bbc4
a87ede2
9f53a67
a87ede2
9f53a67
a87ede2
9f53a67
006bbc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: cc-by-nc-nd-4.0
language:
- en
library_name: transformers
tags:
- reward model
- RLHF
- medical
---

# JSL-MedMNX-7B-SFT

[<img src="https://repository-images.githubusercontent.com/104670986/2e728700-ace4-11ea-9cfc-f3e060b25ddf">](http://www.johnsnowlabs.com)

JSL-MedMNX-7B-SFT is a 7 Billion parameter model developed by [John Snow Labs](https://www.johnsnowlabs.com/).

This model is SFT-finetuned on alpaca format 11k medical dataset over the base model [JSL-MedMNX-7B](https://huggingface.co/johnsnowlabs/JSL-MedMNX-7B). Checkout the perofrmance on [Open Medical LLM Leaderboard](https://huggingface.co/spaces/openlifescienceai/open_medical_llm_leaderboard).

This model is available under a [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license and must also conform to this [Acceptable Use Policy](https://huggingface.co/johnsnowlabs). If you need to license  this model for commercial use, please contact us at [email protected].


## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/JSL-MedMNX-7B-SFT"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
## 🏆 Evaluation

|             Tasks             |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------------------------|-------|------|-----:|--------|-----:|---|-----:|
|stem                           |N/A    |none  |     0|acc_norm|0.5209|±  |0.0068|
|                               |       |none  |     0|acc     |0.5675|±  |0.0058|
| - medmcqa                     |Yaml   |none  |     0|acc     |0.5152|±  |0.0077|
|                               |       |none  |     0|acc_norm|0.5152|±  |0.0077|
| - medqa_4options              |Yaml   |none  |     0|acc     |0.5397|±  |0.0140|
|                               |       |none  |     0|acc_norm|0.5397|±  |0.0140|
| - anatomy (mmlu)              |      0|none  |     0|acc     |0.6593|±  |0.0409|
| - clinical_knowledge (mmlu)   |      0|none  |     0|acc     |0.7245|±  |0.0275|
| - college_biology (mmlu)      |      0|none  |     0|acc     |0.7431|±  |0.0365|
| - college_medicine (mmlu)     |      0|none  |     0|acc     |0.6532|±  |0.0363|
| - medical_genetics (mmlu)     |      0|none  |     0|acc     |0.7300|±  |0.0446|
| - professional_medicine (mmlu)|      0|none  |     0|acc     |0.7206|±  |0.0273|
| - pubmedqa                    |      1|none  |     0|acc     |0.7720|±  |0.0188|

|Groups|Version|Filter|n-shot| Metric |Value |   |Stderr|
|------|-------|------|-----:|--------|-----:|---|-----:|
|stem  |N/A    |none  |     0|acc_norm|0.5209|±  |0.0068|
|      |       |none  |     0|acc     |0.5675|±  |0.0058|