JSL-MedMNX-7B-SFT / README.md
hashamulhaq's picture
Update README.md
d5b7a5e verified
metadata
license: cc-by-nc-nd-4.0
language:
  - en
library_name: transformers
tags:
  - reward model
  - RLHF
  - medical

JSL-MedMNX-7B-SFT

JSL-MedMNX-7B-SFT is a 7 Billion parameter model developed by John Snow Labs.

This model is SFT-finetuned on alpaca format 11k medical dataset over the base model JSL-MedMNX-7B. Checkout the perofrmance on Open Medical LLM Leaderboard.

This model is available under a CC-BY-NC-ND license and must also conform to this Acceptable Use Policy. If you need to license this model for commercial use, please contact us at [email protected].

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "johnsnowlabs/JSL-MedMNX-7B-SFT"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

🏆 Evaluation

Tasks Version Filter n-shot Metric Value Stderr
stem N/A none 0 acc_norm 0.5209 ± 0.0068
none 0 acc 0.5675 ± 0.0058
- medmcqa Yaml none 0 acc 0.5152 ± 0.0077
none 0 acc_norm 0.5152 ± 0.0077
- medqa_4options Yaml none 0 acc 0.5397 ± 0.0140
none 0 acc_norm 0.5397 ± 0.0140
- anatomy (mmlu) 0 none 0 acc 0.6593 ± 0.0409
- clinical_knowledge (mmlu) 0 none 0 acc 0.7245 ± 0.0275
- college_biology (mmlu) 0 none 0 acc 0.7431 ± 0.0365
- college_medicine (mmlu) 0 none 0 acc 0.6532 ± 0.0363
- medical_genetics (mmlu) 0 none 0 acc 0.7300 ± 0.0446
- professional_medicine (mmlu) 0 none 0 acc 0.7206 ± 0.0273
- pubmedqa 1 none 0 acc 0.7720 ± 0.0188
Groups Version Filter n-shot Metric Value Stderr
stem N/A none 0 acc_norm 0.5209 ± 0.0068
none 0 acc 0.5675 ± 0.0058