jayantapaul888's picture
update model card README.md
f69413e
|
raw
history blame
2.44 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
    results: []

twitter-data-distilbert-base-uncased-sentiment-finetuned-memes

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2605
  • Accuracy: 0.9316
  • Precision: 0.9322
  • Recall: 0.9316
  • F1: 0.9317

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3463 1.0 1783 0.2966 0.9065 0.9079 0.9065 0.9066
0.2601 2.0 3566 0.2526 0.9245 0.9254 0.9245 0.9244
0.2228 3.0 5349 0.2355 0.9313 0.9327 0.9313 0.9314
0.1997 4.0 7132 0.2243 0.9341 0.9354 0.9341 0.9342
0.1779 5.0 8915 0.2254 0.9346 0.9354 0.9346 0.9345
0.1642 6.0 10698 0.2355 0.9322 0.9329 0.9322 0.9323
0.146 7.0 12481 0.2485 0.9302 0.9306 0.9302 0.9303
0.1368 8.0 14264 0.2530 0.9296 0.9312 0.9296 0.9299
0.1293 9.0 16047 0.2585 0.9317 0.9322 0.9317 0.9317
0.121 10.0 17830 0.2605 0.9316 0.9322 0.9316 0.9317

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1