File size: 2,440 Bytes
f69413e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2605
- Accuracy: 0.9316
- Precision: 0.9322
- Recall: 0.9316
- F1: 0.9317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.3463 | 1.0 | 1783 | 0.2966 | 0.9065 | 0.9079 | 0.9065 | 0.9066 |
| 0.2601 | 2.0 | 3566 | 0.2526 | 0.9245 | 0.9254 | 0.9245 | 0.9244 |
| 0.2228 | 3.0 | 5349 | 0.2355 | 0.9313 | 0.9327 | 0.9313 | 0.9314 |
| 0.1997 | 4.0 | 7132 | 0.2243 | 0.9341 | 0.9354 | 0.9341 | 0.9342 |
| 0.1779 | 5.0 | 8915 | 0.2254 | 0.9346 | 0.9354 | 0.9346 | 0.9345 |
| 0.1642 | 6.0 | 10698 | 0.2355 | 0.9322 | 0.9329 | 0.9322 | 0.9323 |
| 0.146 | 7.0 | 12481 | 0.2485 | 0.9302 | 0.9306 | 0.9302 | 0.9303 |
| 0.1368 | 8.0 | 14264 | 0.2530 | 0.9296 | 0.9312 | 0.9296 | 0.9299 |
| 0.1293 | 9.0 | 16047 | 0.2585 | 0.9317 | 0.9322 | 0.9317 | 0.9317 |
| 0.121 | 10.0 | 17830 | 0.2605 | 0.9316 | 0.9322 | 0.9316 | 0.9317 |
### Framework versions
- Transformers 4.24.0.dev0
- Pytorch 1.11.0+cu102
- Datasets 2.6.1
- Tokenizers 0.13.1
|