jayantapaul888 commited on
Commit
f69413e
·
1 Parent(s): 588468f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2605
23
+ - Accuracy: 0.9316
24
+ - Precision: 0.9322
25
+ - Recall: 0.9316
26
+ - F1: 0.9317
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 1e-05
46
+ - train_batch_size: 64
47
+ - eval_batch_size: 64
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
57
+ | 0.3463 | 1.0 | 1783 | 0.2966 | 0.9065 | 0.9079 | 0.9065 | 0.9066 |
58
+ | 0.2601 | 2.0 | 3566 | 0.2526 | 0.9245 | 0.9254 | 0.9245 | 0.9244 |
59
+ | 0.2228 | 3.0 | 5349 | 0.2355 | 0.9313 | 0.9327 | 0.9313 | 0.9314 |
60
+ | 0.1997 | 4.0 | 7132 | 0.2243 | 0.9341 | 0.9354 | 0.9341 | 0.9342 |
61
+ | 0.1779 | 5.0 | 8915 | 0.2254 | 0.9346 | 0.9354 | 0.9346 | 0.9345 |
62
+ | 0.1642 | 6.0 | 10698 | 0.2355 | 0.9322 | 0.9329 | 0.9322 | 0.9323 |
63
+ | 0.146 | 7.0 | 12481 | 0.2485 | 0.9302 | 0.9306 | 0.9302 | 0.9303 |
64
+ | 0.1368 | 8.0 | 14264 | 0.2530 | 0.9296 | 0.9312 | 0.9296 | 0.9299 |
65
+ | 0.1293 | 9.0 | 16047 | 0.2585 | 0.9317 | 0.9322 | 0.9317 | 0.9317 |
66
+ | 0.121 | 10.0 | 17830 | 0.2605 | 0.9316 | 0.9322 | 0.9316 | 0.9317 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.24.0.dev0
72
+ - Pytorch 1.11.0+cu102
73
+ - Datasets 2.6.1
74
+ - Tokenizers 0.13.1