Commit
·
f69413e
1
Parent(s):
588468f
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# twitter-data-distilbert-base-uncased-sentiment-finetuned-memes
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.2605
|
23 |
+
- Accuracy: 0.9316
|
24 |
+
- Precision: 0.9322
|
25 |
+
- Recall: 0.9316
|
26 |
+
- F1: 0.9317
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 64
|
47 |
+
- eval_batch_size: 64
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 0.3463 | 1.0 | 1783 | 0.2966 | 0.9065 | 0.9079 | 0.9065 | 0.9066 |
|
58 |
+
| 0.2601 | 2.0 | 3566 | 0.2526 | 0.9245 | 0.9254 | 0.9245 | 0.9244 |
|
59 |
+
| 0.2228 | 3.0 | 5349 | 0.2355 | 0.9313 | 0.9327 | 0.9313 | 0.9314 |
|
60 |
+
| 0.1997 | 4.0 | 7132 | 0.2243 | 0.9341 | 0.9354 | 0.9341 | 0.9342 |
|
61 |
+
| 0.1779 | 5.0 | 8915 | 0.2254 | 0.9346 | 0.9354 | 0.9346 | 0.9345 |
|
62 |
+
| 0.1642 | 6.0 | 10698 | 0.2355 | 0.9322 | 0.9329 | 0.9322 | 0.9323 |
|
63 |
+
| 0.146 | 7.0 | 12481 | 0.2485 | 0.9302 | 0.9306 | 0.9302 | 0.9303 |
|
64 |
+
| 0.1368 | 8.0 | 14264 | 0.2530 | 0.9296 | 0.9312 | 0.9296 | 0.9299 |
|
65 |
+
| 0.1293 | 9.0 | 16047 | 0.2585 | 0.9317 | 0.9322 | 0.9317 | 0.9317 |
|
66 |
+
| 0.121 | 10.0 | 17830 | 0.2605 | 0.9316 | 0.9322 | 0.9316 | 0.9317 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.24.0.dev0
|
72 |
+
- Pytorch 1.11.0+cu102
|
73 |
+
- Datasets 2.6.1
|
74 |
+
- Tokenizers 0.13.1
|