Regression_bert_1 / README.md
helling100's picture
Upload TFDistilBertForSequenceClassification
4d4edc0
|
raw
history blame
3.14 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
model-index:
  - name: Regression_bert_1
    results: []

Regression_bert_1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1782
  • Train Mae: 0.2820
  • Train Mse: 0.1314
  • Train R2-score: 0.7570
  • Validation Loss: 0.1590
  • Validation Mae: 0.3493
  • Validation Mse: 0.1575
  • Validation R2-score: 0.8711
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Mae Train Mse Train R2-score Validation Loss Validation Mae Validation Mse Validation R2-score Epoch
0.2900 0.2663 0.1055 0.4630 0.1897 0.3738 0.1885 0.8539 0
0.1922 0.3084 0.1536 0.4341 0.2302 0.4254 0.2293 0.8277 1
0.3804 0.3059 0.1401 0.2020 0.1218 0.3206 0.1197 0.8852 2
0.2828 0.3079 0.1426 0.7285 0.1612 0.3507 0.1597 0.8700 3
0.1689 0.2803 0.1282 0.7133 0.2451 0.4425 0.2443 0.8173 4
0.1746 0.2955 0.1469 0.7545 0.2007 0.3887 0.1995 0.8472 5
0.1674 0.2840 0.1372 -4.4884 0.1849 0.3671 0.1836 0.8569 6
0.1691 0.2853 0.1351 0.7348 0.1985 0.3857 0.1973 0.8486 7
0.1615 0.2909 0.1414 0.7511 0.1867 0.3696 0.1854 0.8558 8
0.1782 0.2820 0.1314 0.7570 0.1590 0.3493 0.1575 0.8711 9

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2