File size: 3,136 Bytes
9c2a6bc 4d4edc0 9c2a6bc 4d4edc0 9c2a6bc 4d4edc0 9c2a6bc 4d4edc0 9c2a6bc d9dbb04 9c2a6bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Regression_bert_1
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Regression_bert_1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1782
- Train Mae: 0.2820
- Train Mse: 0.1314
- Train R2-score: 0.7570
- Validation Loss: 0.1590
- Validation Mae: 0.3493
- Validation Mse: 0.1575
- Validation R2-score: 0.8711
- Epoch: 9
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch |
|:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:|
| 0.2900 | 0.2663 | 0.1055 | 0.4630 | 0.1897 | 0.3738 | 0.1885 | 0.8539 | 0 |
| 0.1922 | 0.3084 | 0.1536 | 0.4341 | 0.2302 | 0.4254 | 0.2293 | 0.8277 | 1 |
| 0.3804 | 0.3059 | 0.1401 | 0.2020 | 0.1218 | 0.3206 | 0.1197 | 0.8852 | 2 |
| 0.2828 | 0.3079 | 0.1426 | 0.7285 | 0.1612 | 0.3507 | 0.1597 | 0.8700 | 3 |
| 0.1689 | 0.2803 | 0.1282 | 0.7133 | 0.2451 | 0.4425 | 0.2443 | 0.8173 | 4 |
| 0.1746 | 0.2955 | 0.1469 | 0.7545 | 0.2007 | 0.3887 | 0.1995 | 0.8472 | 5 |
| 0.1674 | 0.2840 | 0.1372 | -4.4884 | 0.1849 | 0.3671 | 0.1836 | 0.8569 | 6 |
| 0.1691 | 0.2853 | 0.1351 | 0.7348 | 0.1985 | 0.3857 | 0.1973 | 0.8486 | 7 |
| 0.1615 | 0.2909 | 0.1414 | 0.7511 | 0.1867 | 0.3696 | 0.1854 | 0.8558 | 8 |
| 0.1782 | 0.2820 | 0.1314 | 0.7570 | 0.1590 | 0.3493 | 0.1575 | 0.8711 | 9 |
### Framework versions
- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
|