File size: 3,136 Bytes
9c2a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4edc0
9c2a6bc
4d4edc0
 
 
 
 
 
 
 
 
9c2a6bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4edc0
9c2a6bc
 
 
 
4d4edc0
 
 
 
 
 
 
 
 
 
 
 
9c2a6bc
 
 
 
d9dbb04
9c2a6bc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Regression_bert_1
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Regression_bert_1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1782
- Train Mae: 0.2820
- Train Mse: 0.1314
- Train R2-score: 0.7570
- Validation Loss: 0.1590
- Validation Mae: 0.3493
- Validation Mse: 0.1575
- Validation R2-score: 0.8711
- Epoch: 9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch |
|:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:|
| 0.2900     | 0.2663    | 0.1055    | 0.4630         | 0.1897          | 0.3738         | 0.1885         | 0.8539              | 0     |
| 0.1922     | 0.3084    | 0.1536    | 0.4341         | 0.2302          | 0.4254         | 0.2293         | 0.8277              | 1     |
| 0.3804     | 0.3059    | 0.1401    | 0.2020         | 0.1218          | 0.3206         | 0.1197         | 0.8852              | 2     |
| 0.2828     | 0.3079    | 0.1426    | 0.7285         | 0.1612          | 0.3507         | 0.1597         | 0.8700              | 3     |
| 0.1689     | 0.2803    | 0.1282    | 0.7133         | 0.2451          | 0.4425         | 0.2443         | 0.8173              | 4     |
| 0.1746     | 0.2955    | 0.1469    | 0.7545         | 0.2007          | 0.3887         | 0.1995         | 0.8472              | 5     |
| 0.1674     | 0.2840    | 0.1372    | -4.4884        | 0.1849          | 0.3671         | 0.1836         | 0.8569              | 6     |
| 0.1691     | 0.2853    | 0.1351    | 0.7348         | 0.1985          | 0.3857         | 0.1973         | 0.8486              | 7     |
| 0.1615     | 0.2909    | 0.1414    | 0.7511         | 0.1867          | 0.3696         | 0.1854         | 0.8558              | 8     |
| 0.1782     | 0.2820    | 0.1314    | 0.7570         | 0.1590          | 0.3493         | 0.1575         | 0.8711              | 9     |


### Framework versions

- Transformers 4.27.3
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2