Regression_bert_1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1363
  • Train Mae: 0.2288
  • Train Mse: 0.0928
  • Train R2-score: 0.8065
  • Validation Loss: 0.0994
  • Validation Mae: 0.2297
  • Validation Mse: 0.0947
  • Validation R2-score: 0.8577
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Mae Train Mse Train R2-score Validation Loss Validation Mae Validation Mse Validation R2-score Epoch
0.4890 0.3421 0.1734 0.1995 0.1833 0.3662 0.1820 0.8574 0
0.1771 0.3049 0.1526 0.7380 0.1715 0.3553 0.1701 0.8642 1
0.1563 0.2820 0.1337 0.7278 0.1823 0.3662 0.1810 0.8577 2
0.1578 0.2739 0.1288 0.7954 0.1689 0.3535 0.1674 0.8641 3
0.2301 0.3034 0.1383 0.7186 0.1158 0.3132 0.1136 0.8866 4
0.2067 0.2768 0.1203 0.6568 0.1462 0.3375 0.1445 0.8772 5
0.1631 0.2726 0.1200 0.7418 0.1646 0.3473 0.1632 0.8659 6
0.1689 0.2843 0.1269 0.4797 0.0993 0.2797 0.0972 0.8961 7
0.1756 0.2115 0.0726 0.8657 0.1047 0.2537 0.1027 0.8923 8
0.1363 0.2288 0.0928 0.8065 0.0994 0.2297 0.0947 0.8577 9

Framework versions

  • Transformers 4.27.3
  • TensorFlow 2.11.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.