|
--- |
|
library_name: peft |
|
license: llama3.2 |
|
base_model: meta-llama/Llama-3.2-3B-Instruct |
|
tags: |
|
- llama-factory |
|
- lora |
|
- generated_from_trainer |
|
model-index: |
|
- name: qlora-llama3b-iterative |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# qlora-llama3b-iterative |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) on the train-iterative dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0051 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 2.1156 | 0.0889 | 10 | 1.5894 | |
|
| 1.1893 | 0.1778 | 20 | 0.6868 | |
|
| 0.5218 | 0.2667 | 30 | 0.4555 | |
|
| 0.5292 | 0.3556 | 40 | 0.3795 | |
|
| 0.3866 | 0.4444 | 50 | 0.3065 | |
|
| 0.3232 | 0.5333 | 60 | 0.2074 | |
|
| 0.1802 | 0.6222 | 70 | 0.1532 | |
|
| 0.21 | 0.7111 | 80 | 0.1348 | |
|
| 0.158 | 0.8 | 90 | 0.1372 | |
|
| 0.1629 | 0.8889 | 100 | 0.1276 | |
|
| 0.0966 | 0.9778 | 110 | 0.1003 | |
|
| 0.0643 | 1.0667 | 120 | 0.0879 | |
|
| 0.0726 | 1.1556 | 130 | 0.0872 | |
|
| 0.0493 | 1.2444 | 140 | 0.0906 | |
|
| 0.0746 | 1.3333 | 150 | 0.0587 | |
|
| 0.0473 | 1.4222 | 160 | 0.0561 | |
|
| 0.0644 | 1.5111 | 170 | 0.0503 | |
|
| 0.0366 | 1.6 | 180 | 0.0307 | |
|
| 0.0247 | 1.6889 | 190 | 0.0233 | |
|
| 0.01 | 1.7778 | 200 | 0.0215 | |
|
| 0.0393 | 1.8667 | 210 | 0.0122 | |
|
| 0.0299 | 1.9556 | 220 | 0.0180 | |
|
| 0.0166 | 2.0444 | 230 | 0.0082 | |
|
| 0.0319 | 2.1333 | 240 | 0.0083 | |
|
| 0.0077 | 2.2222 | 250 | 0.0072 | |
|
| 0.0141 | 2.3111 | 260 | 0.0031 | |
|
| 0.0017 | 2.4 | 270 | 0.0120 | |
|
| 0.0015 | 2.4889 | 280 | 0.0153 | |
|
| 0.0126 | 2.5778 | 290 | 0.0141 | |
|
| 0.0043 | 2.6667 | 300 | 0.0022 | |
|
| 0.0068 | 2.7556 | 310 | 0.0019 | |
|
| 0.0018 | 2.8444 | 320 | 0.0022 | |
|
| 0.0026 | 2.9333 | 330 | 0.0034 | |
|
| 0.0017 | 3.0222 | 340 | 0.0076 | |
|
| 0.0002 | 3.1111 | 350 | 0.0102 | |
|
| 0.0004 | 3.2 | 360 | 0.0112 | |
|
| 0.006 | 3.2889 | 370 | 0.0094 | |
|
| 0.0003 | 3.3778 | 380 | 0.0075 | |
|
| 0.0003 | 3.4667 | 390 | 0.0069 | |
|
| 0.0002 | 3.5556 | 400 | 0.0067 | |
|
| 0.0005 | 3.6444 | 410 | 0.0066 | |
|
| 0.0003 | 3.7333 | 420 | 0.0072 | |
|
| 0.0037 | 3.8222 | 430 | 0.0063 | |
|
| 0.004 | 3.9111 | 440 | 0.0053 | |
|
| 0.0003 | 4.0 | 450 | 0.0052 | |
|
| 0.0002 | 4.0889 | 460 | 0.0051 | |
|
| 0.0002 | 4.1778 | 470 | 0.0050 | |
|
| 0.0006 | 4.2667 | 480 | 0.0049 | |
|
| 0.0005 | 4.3556 | 490 | 0.0048 | |
|
| 0.0002 | 4.4444 | 500 | 0.0051 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.46.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |